Uniformity of stresses inside a non-elliptical inhomogeneity interacting with a circular Eshelby inclusion in anti-plane shear

被引:5
作者
Wang, Xu [1 ]
Chen, Liang [1 ]
Schiavone, Peter [2 ]
机构
[1] East China Univ Sci & Technol, Sch Mech & Power Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] Univ Alberta, Dept Mech Engn, Donadeo Innovat Ctr Engn 10 203, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Anti-plane elasticity; Conformal mapping; Inhomogeneity; Eshelby inclusion; ELLIPSOIDAL INCLUSION; ELASTIC FIELD; PROPERTY;
D O I
10.1007/s00419-018-1401-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We use conformal mapping techniques to examine the uniformity of stresses inside a non-elliptical inhomogeneity interacting with a circular Eshelby inclusion in an elastic matrix subjected to remote uniform stresses in anti-plane shear. We show that for a prescribed set of two real loading and two complex geometric parameters, it is possible to determine the single unknown complex coefficient in the mapping function and the (unique) shape of the corresponding inhomogeneity enclosing internal uniform stresses. Our results indicate that the shape of the inhomogeneity depends on the circular Eshelby inclusion whereas the uniform stress field inside the inhomogeneity does not. Finally, we note that the influence of the circular Eshelby inclusion in the vicinity of the inhomogeneity allows for the possibility of a sharp corner on the boundary of the inhomogeneity.
引用
收藏
页码:1759 / 1766
页数:8
相关论文
共 13 条
  • [1] Uniform stress fields inside multiple inclusions in an elastic infinite plane under plane deformation
    Dai, Ming
    Gao, Cun-Fa
    Ru, C. Q.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2177):
  • [2] THE ELASTIC FIELD OUTSIDE AN ELLIPSOIDAL INCLUSION
    ESHELBY, JD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1959, 252 (1271): : 561 - 569
  • [3] THE DETERMINATION OF THE ELASTIC FIELD OF AN ELLIPSOIDAL INCLUSION, AND RELATED PROBLEMS
    ESHELBY, JD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226): : 376 - 396
  • [4] INCLUSION PAIRS SATISFYING ESHELBY'S UNIFORMITY PROPERTY
    Kang, Hyeonbae
    Kim, Eunjoo
    Milton, Graeme W.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 69 (02) : 577 - 595
  • [5] Solutions to the Eshelby conjectures
    Liu, L. P.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2091): : 573 - 594
  • [6] On the absence of Eshelby property for non-ellipsoidal inclusions
    Lubarda, VA
    Markenscoff, X
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1998, 35 (25) : 3405 - 3411
  • [7] On the elliptic inclusion in anti-plane shear
    Ru, CQ
    Schiavone, P
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 1996, 1 (03) : 327 - 333
  • [8] Sendeckyj G. P., 1970, International Journal of Solids and Structures, V6, P1535, DOI 10.1016/0020-7683(70)90062-4
  • [9] Ting T., 1996, Anisotropic Elasticity: Theory and Applications
  • [10] Two inhomogeneities of irregular shape with internal uniform stress fields interacting with a screw dislocation
    Wang, Xu
    Schiavone, Peter
    [J]. COMPTES RENDUS MECANIQUE, 2016, 344 (07): : 532 - 538