Computing zero-dimensional tropical varieties via projections

被引:3
作者
Goerlach, Paul [1 ]
Ren, Yue [2 ]
Zhang, Leon [3 ]
机构
[1] Otto von Guericke Univ, Inst Algebra & Geometry, D-39106 Magdeburg, Germany
[2] Univ Durham, Dept Math, Durham DH1 3LE, England
[3] Univ Calif Berkeley, Evans Hall, Berkeley, CA 94720 USA
关键词
tropical geometry; tropical varieties; computer algebra;
D O I
10.1007/s00037-022-00222-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm for computing zero-dimensional tropical varieties using projections. Our main tools are fast monomial transforms of triangular sets. Given a Grobner basis, we prove that our algorithm requires only a polynomial number of arithmetic operations, and, for ideals in shape position, we show that its timings compare well against univariate factorization and backsubstitution. We conclude that the complexity of computing positive-dimensional tropical varieties via a traversal of the Grobner complex is dominated by the complexity of the Grobner walk.
引用
收藏
页数:33
相关论文
共 38 条
[1]   Log-Barrier Interior Point Methods Are Not Strongly Polynomial [J].
Allamigeon, Xavier ;
Benchimol, Pascal ;
Gaubert, Stephane ;
Joswig, Michael .
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2018, 2 (01) :140-178
[2]  
[Anonymous], 2018, ARXIV180512400
[3]  
[Anonymous], 2013, Algebraic Number Theory
[4]   The Bergman complex of a matroid and phylogenetic trees [J].
Ardila, F ;
Klivans, CJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (01) :38-49
[5]   Understanding Preferences: "Demand Types", and the Existence of Equilibrium With Indivisibilities [J].
Baldwin, Elizabeth ;
Klemperer, Paul .
ECONOMETRICA, 2019, 87 (03) :867-932
[6]  
Bernardin L., 1996, Maple Programming Guide
[7]   Computing tropical varieties [J].
Bogart, T. ;
Jensen, A. N. ;
Speyer, D. ;
Sturmfels, B. ;
Thomas, R. R. .
JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (1-2) :54-73
[8]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[9]   Numerical Software to Compute Newton polytopes and Tropical Membership [J].
Brysiewicz, Taylor .
MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (03) :577-589
[10]  
Burgisser P., 1997, Grundlehren der Mathematischen Wissenschaften, V315