Atomistic simulations of material damping in amorphous silicon nanoresonators

被引:1
作者
Mukherjee, Sankha [1 ]
Song, Jun [2 ]
Vengallatore, Srikar [1 ]
机构
[1] McGill Univ, Dept Mech Engn, 817 Sherbrooke St West, Montreal, PQ H3A 0C3, Canada
[2] McGill Univ, Dept Min & Mat Engn, 3610 Univ St, Montreal, PQ H3A 0C5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
damping; dissipation; amorphous silicon; nanomechanical resonators; phonons; BOND-ORIENTATIONAL ORDER; MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; GENERATION; RESONATORS; GLASSES; LIQUIDS; SYSTEMS; RANGE;
D O I
10.1088/0965-0393/24/5/055015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomistic simulations using molecular dynamics (MD) are emerging as a valuable tool for exploring dissipation and material damping in nanomechanical resonators. In this study, we used isothermal MD to simulate the dynamics of the longitudinal-mode oscillations of an amorphous silicon nanoresonator as a function of frequency (2 GHz-50 GHz) and temperature (15 K-300 K). Damping was characterized by computing the loss tangent with an estimated uncertainty of 7%. The dissipation spectrum displays a sharp peak at 50 K and a broad peak at around 160 K. Damping is a weak function of frequency at room temperature, and the loss tangent has a remarkably high value of similar to 0.01. In contrast, at low temperatures (15 K), the loss tangent increases monotonically from 4 x 10(-4) to 4 x 10(-3) as the frequency increases from 2 GHz to 50 GHz. The mechanisms of dissipation are discussed.
引用
收藏
页数:11
相关论文
共 38 条
[11]   Nanodevice motion at microwave frequencies [J].
Huang, XMH ;
Zorman, CA ;
Mehregany, M ;
Roukes, ML .
NATURE, 2003, 421 (6922) :496-496
[12]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38
[13]   Few-Hundred GHz Carbon Nanotube Nanoelectromechanical Systems (NEMS) [J].
Island, J. O. ;
Tayari, V. ;
McRae, A. C. ;
Champagne, A. R. .
NANO LETTERS, 2012, 12 (09) :4564-4569
[14]   Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator [J].
Jiang, H ;
Yu, MF ;
Liu, B ;
Huang, Y .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :185501-1
[15]   Design strategies for controlling damping in micromechanical and nanomechanical resonators [J].
Joshi, Surabhi ;
Hung, Sherman ;
Vengallatore, Srikar .
EPJ Techniques and Instrumentation, 2014, 1 (01)
[16]   Structural study of supercooled liquid silicon [J].
Kim, T. H. ;
Goldman, A. I. ;
Kelton, K. F. .
PHILOSOPHICAL MAGAZINE, 2008, 88 (02) :171-179
[17]   Akhiezer damping in nanostructures [J].
Kunal, K. ;
Aluru, N. R. .
PHYSICAL REVIEW B, 2011, 84 (24)
[18]   High resolution radial distribution function of pure amorphous silicon [J].
Laaziri, K ;
Kycia, S ;
Roorda, S ;
Chicoine, H ;
Robertson, JL ;
Wang, J ;
Moss, SC .
PHYSICAL REVIEW LETTERS, 1999, 82 (17) :3460-3463
[19]   Internal friction of amorphousand nanocrystalline silicon at low temperatures [J].
Liu, Xiao ;
Spiel, C. L. ;
Merithew, R. D. ;
Pohl, R. O. ;
Nelson, B. P. ;
Wang, Qi ;
Crandall, R. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 442 (1-2) :307-313
[20]   PREPARATION, STRUCTURE, DYNAMICS, AND ENERGETICS OF AMORPHOUS-SILICON - A MOLECULAR-DYNAMICS STUDY [J].
LUEDTKE, WD ;
LANDMAN, U .
PHYSICAL REVIEW B, 1989, 40 (02) :1164-1174