Faster indicators of chikungunya incidence using Google searches

被引:2
作者
Miller, Sam [1 ,2 ]
Preis, Tobias [1 ,2 ]
Mizzi, Giovanni [1 ]
Bastos, Leonardo Soares [3 ]
Gomes, Marcelo Ferreira da Costa [3 ]
Coelho, Flavio Codeco [4 ,5 ]
Codeco, Claudia Torres [3 ]
Moat, Helen Susannah [1 ,2 ]
机构
[1] Univ Warwick, Warwick Business Sch, Data Sci Lab, Behav Sci, Coventry, England
[2] Alan Turing Inst, London, England
[3] Fundacao Oswaldo Cruz, Programa Computacao Cient, Rio De Janeiro, Brazil
[4] Fundacao Getulio Vargas, Escola Matemat Aplicada, Rio De Janeiro, Brazil
[5] Univ Geneva, Inst Global Hlth, Geneva, Switzerland
来源
PLOS NEGLECTED TROPICAL DISEASES | 2022年 / 16卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1371/journal.pntd.0010441
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Chikungunya, a mosquito-borne disease, is a growing threat in Brazil, where over 640,000 cases have been reported since 2017. However, there are often long delays between diagnoses of chikungunya cases and their entry in the national monitoring system, leaving policymakers without the up-to-date case count statistics they need. In contrast, weekly data on Google searches for chikungunya is available with no delay. Here, we analyse whether Google search data can help improve rapid estimates of chikungunya case counts in Rio de Janeiro, Brazil. We build on a Bayesian approach suitable for data that is subject to long and varied delays, and find that including Google search data reduces both model error and uncertainty. These improvements are largest during epidemics, which are particularly important periods for policymakers. Including Google search data in chikungunya surveillance systems may therefore help policymakers respond to future epidemics more quickly.
引用
收藏
页数:16
相关论文
共 32 条
  • [1] Potential risks of Zika and chikungunya outbreaks in Brazil: A modeling study
    Aguiar, Breno S.
    Lorenz, Camila
    Virginio, Flavia
    Suesdek, Lincoln
    Chiaravalloti-Neto, Francisco
    [J]. INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2018, 70 : 20 - 29
  • [2] Inability to work due to Chikungunya virus infection: impact on public service during the first epidemic in the State of Ceara, northeastern Brazil
    Almeida Bastos, Maria Luiza
    de Abreu, Francileudo Santos
    da Silva Junior, Geraldo Bezerra
    [J]. BRAZILIAN JOURNAL OF INFECTIOUS DISEASES, 2018, 22 (03) : 248 - 249
  • [3] Prediction of Dengue Incidence Using Search Query Surveillance
    Althouse, Benjamin M.
    Ng, Yih Yng
    Cummings, Derek A. T.
    [J]. PLOS NEGLECTED TROPICAL DISEASES, 2011, 5 (08):
  • [4] [Anonymous], 2008, US
  • [5] Alert: Severe cases and deaths associated with Chikungunya in Brazil
    Antunes de Brito, Carlos Alexandre
    [J]. REVISTA DA SOCIEDADE BRASILEIRA DE MEDICINA TROPICAL, 2017, 50 (05) : 585 - 589
  • [6] A modelling approach for correcting reporting delays in disease surveillance data
    Bastos, Leonardo S.
    Economou, Theodoros
    Gomes, Marcelo F. C.
    Villela, Daniel A. M.
    Coelho, Flavio C.
    Cruz, Oswaldo G.
    Stoner, Oliver
    Bailey, Trevor
    Codeco, Claudia T.
    [J]. STATISTICS IN MEDICINE, 2019, 38 (22) : 4363 - 4377
  • [7] Brazilian Ministry of Health, 2021, FEBR CHIK NOT REG NO
  • [8] Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance
    Chan, Emily H.
    Sahai, Vikram
    Conrad, Corrie
    Brownstein, John S.
    [J]. PLOS NEGLECTED TROPICAL DISEASES, 2011, 5 (05):
  • [9] Predicting the Present with Google Trends
    Choi, Hyunyoung
    Varian, Hal
    [J]. ECONOMIC RECORD, 2012, 88 : 2 - 9
  • [10] Codeco C., 2018, Revue d'Epidemiologie et de Sante Publique, V66, pS386, DOI DOI 10.1016/J.RESPE.2018.05.408