Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction

被引:439
作者
Sakamoto, K
McCarthy, A
Smith, D
Green, KA
Hardie, DG
Ashworth, A
Alessi, DR
机构
[1] Univ Dundee, Sch Life Sci, MRC, Prot Phosphorylat Unit, Dundee DD1 5EH, Scotland
[2] Inst Canc Res, Breakthrough Breast Canc Res Ctr, London SW3 6JB, England
[3] Univ Dundee, Sch Life Sci, Div Mol Physiol, Dundee DD1 5EH, Scotland
基金
英国医学研究理事会;
关键词
AMP-activated protein kinase; glucose transport; LKB1; phenformin; skeletal muscle;
D O I
10.1038/sj.emboj.7600667
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies indicate that the LKB1 tumour suppressor protein kinase is the major 'upstream' activator of the energy sensor AMP-activated protein kinase (AMPK). We have used mice in which LKB1 is expressed at only similar to 10% of the normal levels in muscle and most other tissues, or that lack LKB1 entirely in skeletal muscle. Muscle expressing only 10% of the normal level of LKB1 had significantly reduced phosphorylation and activation of AMPK alpha 2. In LKB1-lacking muscle, the basal activity of the AMPKa2 isoform was greatly reduced and was not increased by the AMP-mimetic agent, 5-aminoimidazole-4-carboxamide riboside (AICAR), by the antidiabetic drug phenformin, or by muscle contraction. Moreover, phosphorylation of acetyl CoA carboxylase-2, a downstream target of AMPK, was profoundly reduced. Glucose uptake stimulated by AICAR or muscle contraction, but not by insulin, was inhibited in the absence of LKB1. Contraction increased the AMP: ATP ratio to a greater extent in LKB1-deficient muscles than in LKB1-expressing muscles. These studies establish the importance of LKB1 in regulating AMPK activity and cellular energy levels in response to contraction and phenformin.
引用
收藏
页码:1810 / 1820
页数:11
相关论文
共 39 条
[1]   Myocardial ischemia differentially regulates LKB1 and an alternate 5′-AMP-activated protein kinase kinase [J].
Altarejos, JY ;
Taniguchi, M ;
Clanachan, AS ;
Lopaschuk, GD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (01) :183-190
[2]   5′ adenosine monophosphate-activated protein kinase, metabolism and exercise [J].
Aschenbach, WG ;
Sakamoto, K ;
Goodyear, LJ .
SPORTS MEDICINE, 2004, 34 (02) :91-103
[3]   Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD [J].
Baas, AF ;
Boudeau, J ;
Sapkota, GP ;
Smit, L ;
Medema, R ;
Morrice, NA ;
Alessi, DR ;
Clevers, HC .
EMBO JOURNAL, 2003, 22 (12) :3062-3072
[4]   Dual mechanisms regulating AMPK kinase action in the ischemic heart [J].
Baron, SJ ;
Li, J ;
Russell, RR ;
Neumann, D ;
Miller, EJ ;
Tuerk, R ;
Wallimann, T ;
Hurley, RL ;
Witters, LA ;
Young, LH .
CIRCULATION RESEARCH, 2005, 96 (03) :337-345
[5]   Analysis of the LKB1-STRAD-MO25 complex [J].
Boudeau, J ;
Scott, JW ;
Resta, N ;
Deak, M ;
Kieloch, A ;
Komander, D ;
Hardie, DG ;
Prescott, AR ;
van Aalten, DMF ;
Alessi, DR .
JOURNAL OF CELL SCIENCE, 2004, 117 (26) :6365-6375
[6]   MO25α/β interact with STRADα/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm [J].
Boudeau, J ;
Baas, AF ;
Deak, M ;
Morrice, NA ;
Kieloch, A ;
Schutkowski, M ;
Prescott, AR ;
Clevers, HC ;
Alessi, DR .
EMBO JOURNAL, 2003, 22 (19) :5102-5114
[7]   A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance [J].
Bruning, JC ;
Michael, MD ;
Winnay, JN ;
Hayashi, T ;
Horsch, D ;
Accili, D ;
Goodyear, LJ ;
Kahn, CR .
MOLECULAR CELL, 1998, 2 (05) :559-569
[8]   The AMP-activated protein kinase cascade - a unifying system for energy control [J].
Carling, D .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (01) :18-24
[9]  
CORTON JM, 1995, EUR J BIOCHEM, V229, P558, DOI 10.1111/j.1432-1033.1995.tb20498.x
[10]   LOCATION AND FUNCTION OF 3 SITES PHOSPHORYLATED ON RAT ACETYL-COA CARBOXYLASE BY THE AMP-ACTIVATED PROTEIN-KINASE [J].
DAVIES, SP ;
SIM, ATR ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1990, 187 (01) :183-190