Stationary navier-stokes flow around a rotating obstacle

被引:36
作者
Farwig, Reinhard [1 ]
Hishida, Toshiaki
机构
[1] Tech Univ Darmstadt, D-95021 Darmstadt, Germany
[2] Niigata Univ, Niigata 95021, Japan
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2007年 / 50卷 / 03期
关键词
navier-stokes flow; rotating obstacle; exterior domain; weak stationary solutions; Weak-L-p spaces;
D O I
10.1619/fesi.50.371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a viscous incompressible fluid filling the whole 3-dimensional space exterior to a rotating body with constant angular velocity 0). By using a coordinate system attached to the body, the problem is reduced to an equivalent one in a fixed exterior domain. The reduced equation involves the crucial drift operator (omega boolean AND x) center dot del, which is not subordinate to the usual Stokes operator. This paper addresses stationary flows to the reduced problem with an external force f = div F, that is, time-periodic flows to the original one. Generalizing previous results of G. P. Galdi [ 19] we show the existence of a unique solution (del u, p) in the class L-3/2,infinity when both F epsilon L-3/2,infinity and omega are small enough; here L-3/2,infinity is the weak-L-3/2 space.
引用
收藏
页码:371 / 403
页数:33
相关论文
共 37 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES
[2]  
Bogovskii M. E., 1979, SOV MATH DOKL, V20, P1094
[3]   ALGEBRAIC L2 DECAY FOR NAVIER-STOKES FLOWS IN EXTERIOR DOMAINS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1990, 165 (3-4) :189-227
[4]   ON STABILITY OF EXTERIOR STATIONARY NAVIER-STOKES FLOWS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1995, 174 (02) :311-382
[5]  
Borchers W., 1990, HOKKAIDO MATH J, V19, P67, DOI DOI 10.14492/HOKMJ/1381517172
[6]  
BORCHERS W, 1992, STABILITAT FAKORISIE
[7]  
Cattabriga L., 1961, Rend. Semin. Mat. Univ. Padova, V31, P308
[8]  
Chemin J.-Y., 1998, Perfect Incompressible Fluids
[9]  
Chen Z., 1997, ADV MATH SCI APPL, V7, P741
[10]   Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle [J].
Cumsille, P ;
Tucsnak, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (05) :595-623