Iterated nonexpansive mappings in Hilbert spaces

被引:1
作者
Piatek, Bozena [1 ]
机构
[1] Silesian Tech Univ, Dept Math, Gliwice, Poland
关键词
Hilbert space; generalized nonexpansive mapping; asymptotically regular mapping;
D O I
10.1007/s11784-021-00898-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [T. Dominguez Benavides and E. Llorens-Fuster, Iterated nonexpansive mappings, J. Fixed Point Theory Appl. 20 (2018), no. 3, Paper No. 104, 18 pp.], the authors raised the question about the existence of a fixed point free continuous INEA mapping T defined on a closed convex and bounded subset (or on a weakly compact convex subset) of a Banach space with normal structure. Our main goal is to give the affirmative answer to this problem in the very special case of a Hilbert space.
引用
收藏
页数:14
相关论文
共 9 条
[1]  
[Anonymous], 1984, UNIFORM CONVEXITY HY
[2]  
[Anonymous], 1955, Trans. Amer. Math. Soc., DOI DOI 10.1090/S0002-9947-1955-0069388-5
[3]   NORMAL STRUCTURE IN BANACH SPACES [J].
BELLUCE, LP ;
KIRK, WA ;
STEINER, EF .
PACIFIC JOURNAL OF MATHEMATICS, 1968, 26 (03) :433-&
[4]  
Bridson M.R., 1999, Metric Spaces of Non-Positive Curvature, DOI [10.1007/978-3-662-12494-9, DOI 10.1007/978-3-662-12494-9]
[5]   Iterated nonexpansive mappings [J].
Dominguez Benavides, Tomas ;
Llorens-Fuster, Enrique .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (03)
[6]  
Goebel K., 2002, Concise course on fixed point theorems
[7]  
Goebel K., 1990, TOPICS METRIC FIXED, P244
[8]  
Kumar S., 2015, J. Appl. Funct. Anal, V10, P31
[9]  
REICH S, 1972, ATTI ACCAD NAZ LIN, V53, P250