Identities for the ternary commutator

被引:23
作者
Bremner, M [1 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jabr.1998.7433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper classifies all identities of degree 7 satisfied by the ternary commutator in an associative ternary algebra. (Seven is the lowest degree for which non-trivial identities exist.) These identities are ternary generalizations of the Jacobi identity for Lie algebras. (C) 1998 Academic Press.
引用
收藏
页码:615 / 623
页数:9
相关论文
共 9 条
[1]  
Baranovic T. M., 1975, RUSS MATH SURV, V30, P61
[2]   Varieties of anticommutative n-ary algebras [J].
Bremner, M .
JOURNAL OF ALGEBRA, 1997, 191 (01) :76-88
[3]  
Bremner M., 1996, NOVA J MATH GAME THE, V4, P119
[4]   Higher-order simple Lie algebras [J].
deAzcarraga, JA ;
Bueno, JCP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (03) :669-681
[5]  
GILIPPOV VT, 1985, SIBERIAN MATH J, V26, P879
[6]  
GNEDBAYE AV, 1995, CR ACAD SCI I-MATH, V321, P147
[7]  
GNEDBAYE AV, 1995, THESIS U L PASTEUR S
[8]   ON LIE K-ALGEBRAS [J].
HANLON, P ;
WACHS, M .
ADVANCES IN MATHEMATICS, 1995, 113 (02) :206-236
[9]  
Kurosh A. G., 1969, RUSS MATH SURV, V24, P1