Parameterizing Support Vector Machines for Land Cover Classification

被引:80
作者
Yang, Xiaojun [1 ]
机构
[1] Florida State Univ, Dept Geog, Tallahassee, FL 32306 USA
关键词
SUPERVISED CLASSIFICATION; MULTICLASS CLASSIFICATION; IMAGE CLASSIFICATION; ATLANTA;
D O I
10.14358/PERS.77.1.27
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The support vector machine is a group of relatively novel statistical learning algorithms that have not been extensively exploited in the remote sensing community. In previous studies they have been found to generally outperform some popular classifiers. Several recent studies found that training samples and input data dimensionalities can affect image classification accuracies by those popular classifiers and support vector machines alike. The current study extends beyond these recent research frameworks and into another important inquiry area addressing the impacts of internal parameterization on the performance of support vector machines for land-cover classification. A set of support vector machines with different combinations of kernel types, parameters, and error penalty are carefully constructed to classify a Landsat Thematic Mapper image into eight major land-cover categories using identical training data. The accuracy of each classified map is further evaluated using identical reference data. The results reveal that kernel types and error penalty can substantially affect the classification accuracy, and that a careful selection of parameter settings can help improve the performance of the support vector classification. These findings reported here can help establish a practical guidance on the use of support vector machines for land-cover classification from remote sensor data.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 36 条
[1]  
Anderson J., 1976, Geological survey professional paper 964, V964, DOI DOI 10.3133/PP964
[2]  
[Anonymous], 2003, PRACTICAL GUIDE SUPP
[3]  
[Anonymous], 2001, Pattern Classification
[4]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[5]   Kernel-based methods for hyperspectral image classification [J].
Camps-Valls, G ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06) :1351-1362
[6]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[7]   A REVIEW OF ASSESSING THE ACCURACY OF CLASSIFICATIONS OF REMOTELY SENSED DATA [J].
CONGALTON, RG .
REMOTE SENSING OF ENVIRONMENT, 1991, 37 (01) :35-46
[8]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[9]   Use of neural networks for automatic classification from high-resolution images [J].
Del Frate, Fabio ;
Pacifici, Fabio ;
Schiavon, Giovanni ;
Solimini, Chiara .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (04) :800-809
[10]   Global consequences of land use [J].
Foley, JA ;
DeFries, R ;
Asner, GP ;
Barford, C ;
Bonan, G ;
Carpenter, SR ;
Chapin, FS ;
Coe, MT ;
Daily, GC ;
Gibbs, HK ;
Helkowski, JH ;
Holloway, T ;
Howard, EA ;
Kucharik, CJ ;
Monfreda, C ;
Patz, JA ;
Prentice, IC ;
Ramankutty, N ;
Snyder, PK .
SCIENCE, 2005, 309 (5734) :570-574