Centers and Limit Cycles of a Generalized Cubic Riccati System

被引:3
作者
Zhou, Zhengxin [1 ]
Romanovski, Valery G. [2 ,3 ,4 ]
Yu, Jiang [5 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[2] Univ Maribor, Fac Elect Engn & Comp Sci, Smetanova 17, SI-2000 Maribor, Slovenia
[3] Univ Maribor, CAMTP Ctr Appl Math & Theoret Phys, Krekova 2, SI-2000 Maribor, Slovenia
[4] Univ Maribor, Fac Nat Sci & Math, Koroska C 160, SI-2000 Maribor, Slovenia
[5] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 02期
关键词
Center; limit cycle; cyclicity; DIFFERENTIAL-SYSTEMS; 1ST INTEGRALS; INTEGRABILITY; BIFURCATIONS;
D O I
10.1142/S0218127420500212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the conditions for the existence of a center for a cubic planar differential system, which can be considered as a polynomial subfamily of the generalized Riccati system. We also investigate bifurcations of small limit cycles from the components of the center variety of the system.
引用
收藏
页数:10
相关论文
共 31 条
[21]  
Kapteyn W, 1910, P K AKAD WET-AMSTERD, V13, P1241
[22]   Hilbert's 16th problem and bifurcations of planar polynomial vector fields [J].
Li, JB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :47-106
[23]  
Liu Y., 2008, Singular Point Values, Center Problem and Bifurcations of Limit Cycles of Two Dimensional Differential Autonomous Systems
[24]  
Llibre J, 2015, ADV NONLINEAR STUD, V15, P951
[25]   ALGEBRAIC INVARIANT CURVES AND FIRST INTEGRALS FOR RICCATI POLYNOMIAL DIFFERENTIAL SYSTEMS [J].
Llibre, Jaume ;
Valls, Claudia .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) :3533-3543
[26]   On the Darboux Integrability of Polynomial Differential Systems [J].
Llibre, Jaume ;
Zhang, Xiang .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2012, 11 (01) :129-144
[27]  
Llibre J, 2011, J APPL ANAL COMPUT, V1, P33
[28]  
Romanovski V., 2009, CTR CYCLICITY PROBLE
[29]   An approach to solving systems of polynomials via modular arithmetics with applications [J].
Romanovski, Valery G. ;
Presern, Mateja .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) :196-208
[30]  
Sibirskii K.S., 1976, Algebraic Invariants of Differential Equations and Matrices. Izdat. Stiinca