Centers and Limit Cycles of a Generalized Cubic Riccati System

被引:3
作者
Zhou, Zhengxin [1 ]
Romanovski, Valery G. [2 ,3 ,4 ]
Yu, Jiang [5 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[2] Univ Maribor, Fac Elect Engn & Comp Sci, Smetanova 17, SI-2000 Maribor, Slovenia
[3] Univ Maribor, CAMTP Ctr Appl Math & Theoret Phys, Krekova 2, SI-2000 Maribor, Slovenia
[4] Univ Maribor, Fac Nat Sci & Math, Koroska C 160, SI-2000 Maribor, Slovenia
[5] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 02期
关键词
Center; limit cycle; cyclicity; DIFFERENTIAL-SYSTEMS; 1ST INTEGRALS; INTEGRABILITY; BIFURCATIONS;
D O I
10.1142/S0218127420500212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the conditions for the existence of a center for a cubic planar differential system, which can be considered as a polynomial subfamily of the generalized Riccati system. We also investigate bifurcations of small limit cycles from the components of the center variety of the system.
引用
收藏
页数:10
相关论文
共 31 条
[1]  
Amel'kin V.V., 1982, NONLINEAR OSCILLATIO
[2]   Modular algorithms for computing Grobner bases [J].
Arnold, EA .
JOURNAL OF SYMBOLIC COMPUTATION, 2003, 35 (04) :403-419
[3]  
Barlow HD, 2010, CRIMINOLOGY AND PUBLIC POLICY: PUTTING THEORY TO WORK, P3
[4]  
Bautin N.N., 1954, AM MATH SOC TRANSL, V100, P181
[5]   BIFURCATION OF CRITICAL PERIODS FOR PLANE VECTOR-FIELDS [J].
CHICONE, C ;
JACOBS, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (02) :433-486
[6]  
Christopher C, 2005, TRENDS MATH, P23
[7]  
Christopher C., 2007, Limit cycles of differential equations, Advanced Courses in Mathematics
[8]   ON THE PAPER OF JIN AND WANG CONCERNING THE CONDITIONS FOR A CENTER IN CERTAIN CUBIC SYSTEMS [J].
CHRISTOPHER, CJ ;
LLOYD, NG .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :5-12
[9]  
Cox D., 1997, Ideals, Varieties, and Algorithms, V3
[10]  
Decker W., 2012, SINGULAR