Existence and asymptotic behavior of positive solutions for an inhomogeneous semilinear elliptic equation

被引:8
作者
Deng, Yinbin [1 ]
Yang, Fen [1 ]
机构
[1] Huazhong Normal Univ, Dept Math, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
existence; positive solution; asymptotic behavior; inhomogeneous elliptic equations;
D O I
10.1016/j.na.2006.10.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a contribution on the elliptic equation Delta u+K(vertical bar x vertical bar)u(P)+f(x)=0 where p > 1, x is an element of R-n, n >= 3, Delta=Sigma(n)(i=1) partial derivative(2)/partial derivative x(i)(2). The existence and asymptotic behaviors at infinity and 0 of positive solutions are obtained under more general vanishing conditions for f and K. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:246 / 272
页数:27
相关论文
共 22 条
[1]   Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in Rn [J].
Bae, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (02) :274-311
[2]   Separation structure of positive radial solutions of a semilinear elliptic equation in Rn [J].
Bae, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (02) :460-499
[3]   Infinite multiplicity of positive entire solutions for a semilinear elliptic equation [J].
Bae, S ;
Chang, TK ;
Pahk, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (02) :367-387
[4]   Asymptotic behavior of positive solutions of inhomogeneous semilinear elliptic equations [J].
Bae, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (08) :1373-1403
[5]   Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on Rn [J].
Bae, S ;
Ni, WM .
MATHEMATISCHE ANNALEN, 2001, 320 (01) :191-210
[6]   An inhomogeneous semilinear equation in entire space [J].
Bernard, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (01) :184-214
[7]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[8]  
DENG Y, EXISTENCE DECAY PROP
[9]   On the existence of multiple positive solutions for a semilinear problem in exterior domains [J].
Deng, YB ;
Li, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (01) :197-229
[10]  
Deng YH., 1997, Adv. Differ. Equ, V2, P361