On the generation of discrete isotropic orientation distributions for linear elastic cubic crystals

被引:12
作者
Bertram, A [1 ]
Böhlke, T
Gaffke, N
Heiligers, B
Offinger, R
机构
[1] Univ Magdeburg, Fac Engn, D-39106 Magdeburg, Germany
[2] Univ Magdeburg, Fac Math, D-39106 Magdeburg, Germany
关键词
anisotropy; cubic symmetry; discrete orientation distribution; invariant subspace; isotropy; linear elasticity; polycrystals; Reuss average; special orthogonal group; Voigt average;
D O I
10.1023/A:1007655817328
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a model for the elastic behavior of a polycrystalline material based on volume averages. In this case the effective elastic properties depend only on the distribution of the grain orientations. The aggregate is assumed to consist of a finite number of grains each of which behaves elastically like a cubic single crystal. The material parameters are fixed over the grains. An important problem is to find discrete orientation distributions (DODs) which are isotropic, i.e., whose Voigt and Reuss averages of the grain stiffness tensors are isotropic. We succeed in finding isotropic DODs for any even number of grains N greater than or equal to4 and uniform volume fractions of the grains. Also, N=4 is shown to be the minimum number of grains for an isotropic DOD.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 14 条
[1]  
ALERS GA, 1966, T METALL SOC AIME, V236, P482
[2]  
[Anonymous], 1984, MATRIX GROUPS
[3]  
BERTRAM A, 2000, UNPUB DISCRETE ISOTR
[4]  
BERTRAM A, 1991, ASME MD, V26, P129
[5]  
BERTRAM A, 1993, Z ANGEW MATH MECH, V73, pT104
[6]  
BOHLKE T, 1999, ZAMM S2, V79, pS448
[7]  
BUNGE HJ, 1968, KRISTALL TECHNIK, V3, P431
[8]  
Gaffke N., 1996, Handbook of Statistics, V13, P1149
[9]   THE ELASTIC BEHAVIOUR OF A CRYSTALLINE AGGREGATE [J].
HILL, R .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1952, 65 (389) :349-355
[10]  
Kocks U.F., 1998, TEXTURE ANISOTROPY P