Steady states of max-Lukasiewicz fuzzy systems

被引:4
作者
Gavalec, Martin [1 ]
Nemcova, Zuzana [1 ]
机构
[1] Univ Hradec Kralove, Fac Informat & Management, Rokitanskeho 62, Hradec Kralove 50003 3, Czech Republic
关键词
Fuzzy algebra; t-Norms; Max-Lukasiewicz algebra; Steady states; EIGENSPACE STRUCTURE; MATRIX;
D O I
10.1016/j.fss.2017.02.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper gives a systematic characterization of the eigenspaces in a max-t algebra, where t is the Lukasiewicz t-norm. A max-Lukasiewicz fuzzy algebra can be used for the description of the states of discrete-event systems. The states can represent a balance between the resources expended during the run of a system (for example fuel or money). The classification of max-Lukasiewicz eigenspaces is described and illustrated by two- and three-dimensional examples: in this case it is possible to accompany the example with graphs. However, the description of the eigenspaces for higher dimensions is also outlined. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 68
页数:11
相关论文
共 9 条
[1]   Reasoning with the finitely many-valued Lukasiewicz fuzzy Description Logic SROIQ [J].
Bobillo, Fernando ;
Straccia, Umberto .
INFORMATION SCIENCES, 2011, 181 (04) :758-778
[2]   Tropical linear algebra with the Lukasiewicz T-norm [J].
Gavalec, Martin ;
Nemcova, Zuzana ;
Sergeev, Sergei .
FUZZY SETS AND SYSTEMS, 2015, 276 :131-148
[3]   Eigenspace structure of a max-drast fuzzy matrix [J].
Gavalec, Martin ;
Rashid, Imran ;
Cimler, Richard .
FUZZY SETS AND SYSTEMS, 2014, 249 :100-113
[4]  
Gottwald Siegfried., 2001, STUDIES LOGIC COMPUT, V9
[5]  
Klement E.P., 2000, A TRIANGULAR NORMS
[6]   The structure of max-plus hyperplanes [J].
Nitica, V. ;
Singer, I. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :382-414
[7]   Eigenspace structure of a max-prod fuzzy matrix [J].
Rashid, Imran ;
Gavalec, Martin ;
Cimler, Richard .
FUZZY SETS AND SYSTEMS, 2016, 303 :136-148
[8]  
Rashid I, 2012, KYBERNETIKA, V48, P309
[9]  
SCHWEIZER B., 1960, Pacific J. Math., V10, P313, DOI DOI 10.2140/PJM.1960.10.313