A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

被引:117
作者
Montzka, Carsten [1 ]
Herbst, Michael [1 ]
Weihermueller, Lutz [1 ]
Verhoef, Anne [2 ]
Vereecken, Harry [1 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Bio & Geosci Agrosphere IBG 3, Julich, Germany
[2] Univ Reading, Dept Geog & Environm Sci, Reading, Berks, England
[3] Int Soil Modeling Consortium, Julich, Germany
关键词
PEDOTRANSFER FUNCTIONS; PHYSICAL-PROPERTIES; SCALING ANALYSIS; PARAMETERS; MODEL; FLOW; FLUXES; ENERGY; JULES;
D O I
10.5194/essd-9-529-2017
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter lambda, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25 degrees at https://doi.org/10.1594/PANGAEA.870605.
引用
收藏
页码:529 / 543
页数:15
相关论文
共 65 条
[1]   SCALING SOIL-WATER PROPERTIES AND INFILTRATION MODELING [J].
AHUJA, LR ;
NANEY, JW ;
NIELSEN, DR .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1984, 48 (05) :970-973
[2]  
[Anonymous], 1964, MEDIA HYDROL PAP
[3]   Mapping topsoil physical properties at European scale using the LUCAS database [J].
Ballabio, Cristiano ;
Panagos, Panos ;
Monatanarella, Luca .
GEODERMA, 2016, 261 :110-123
[4]   ERA-Interim/Land: a global land surface reanalysis data set [J].
Balsamo, G. ;
Albergel, C. ;
Beljaars, A. ;
Boussetta, S. ;
Brun, E. ;
Cloke, H. ;
Dee, D. ;
Dutra, E. ;
Munoz-Sabater, J. ;
Pappenberger, F. ;
de Rosnay, P. ;
Stockdale, T. ;
Vitart, F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (01) :389-407
[5]   Inverse determination of heterotrophic soil respiration response to temperature and water content under field conditions [J].
Bauer, J. ;
Weihermueller, L. ;
Huisman, J. A. ;
Herbst, M. ;
Graf, A. ;
Sequaris, J. M. ;
Vereecken, H. .
BIOGEOCHEMISTRY, 2012, 108 (1-3) :119-134
[6]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[7]  
Bouma J., 1989, Advances in Soil Science, V9, P177
[8]   AGGREGATION ERROR IN NON-LINEAR ECOLOGICAL MODELS [J].
CALE, WG ;
ONEILL, RV ;
GARDNER, RH .
JOURNAL OF THEORETICAL BIOLOGY, 1983, 100 (03) :539-550
[9]   SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA [J].
CAMPBELL, GS .
SOIL SCIENCE, 1974, 117 (06) :311-314
[10]  
CLAPP RB, 1978, WATER RESOUR RES, V14, P601, DOI 10.1029/WR014i004p00601