Single atom-based catalysts for electrochemical CO2 reduction

被引:64
|
作者
Sun, Qian [1 ]
Jia, Chen [1 ]
Zhao, Yong [1 ]
Zhao, Chuan [1 ]
机构
[1] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
CO2; electroreduction; Wet-chemistry approach; Single atom catalyst; Molecular catalyst; In-situ characterization; METAL-ORGANIC FRAMEWORK; GAS-DIFFUSION ELECTRODES; N-DOPED CARBON; ATOMICALLY DISPERSED IRON; HIGHLY EFFICIENT CO2; ACTIVE-SITES; ELECTROCATALYTIC REDUCTION; IONIC LIQUIDS; CO2-TO-CO CONVERSION; COORDINATION ENVIRONMENT;
D O I
10.1016/S1872-2067(21)64000-7
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrochemical CO2 reduction reaction (CO2RR), powered by renewable energy, emerges as a promising approach against environmental issues and energy crisis by converting CO2 into value-added chemicals. Single atom catalysts (SACs) with isolated metal atoms dispersed on supports exhibit outstanding performance for CO2 electroreduction, because of their strong single atom-support interactions, maximum metal utilization and excellent catalytic activity. However, SACs suffer from agglomeration of particles, low metal loading, and difficulty in large-scale production. In addition, molecular catalysts as another single atom-based catalyst, consisting of ligands molecules connected to metal ions, exhibited similar metal-nitrogen (M-N) active centers as that in metal-nitrogen-carbon (M-N-C) SACs, which were highly active to CO2 reduction due to their well-defined active sites and tunability over the steric and electronic properties of the active sites. Nonetheless, molecular catalysts are challenged by generally moderate activity, selectivity and stability, poor conductivity and aggregation. Many works have been devoted to overcoming these issues of SACs and molecular catalysts for efficient CO2RR, but only limited reviews for systematic summary of their fabrication, application, and characterizations, which were highlighted in this review. Firstly, we summarize recent advanced strategies in preparing SACs for CO2RR, including wet-chemistry approaches (defect engineering, spatial confinement, and coordination design), other synthetic methods and large-scale production of SACs. Besides, electrochemical applications of SACs and molecular catalysts on CO2RR are discussed, which involved the faradaic efficiency and partial current density of the desired product as well as the catalyst stability. In addition, ex-situ and in-situ/operando characterization techniques are briefly assessed, benefiting probing the active sites and understanding the CO2RR catalytic mechanisms. Finally, future directions for the development of single atom-based catalysts (SACs, molecular catalysts) are pointed out. (C) 2022, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1547 / 1597
页数:51
相关论文
共 50 条
  • [31] Electrochemical Reduction of CO2 via Single-Atom Catalysts Supported on α-In2Se3
    Yang, Yun
    Liu, Shixi
    Fu, Gang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (26): : 6110 - 6118
  • [32] Single Atom and Nanoclustered Pt Catalysts for Selective CO2 Reduction
    Wang, Yuan
    Arandiyan, Hamidreza
    Scott, Jason
    Aguey-Zinsou, Kondo-Francois
    Amal, Rose
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (12): : 6781 - 6789
  • [33] Emerging materials for electrochemical CO2 reduction: progress and optimization strategies of carbon-based single-atom catalysts
    Qu, Guangfei
    Wei, Kunling
    Pan, Keheng
    Qin, Jin
    Lv, Jiaxin
    Li, Junyan
    Ning, Ping
    NANOSCALE, 2023, 15 (08) : 3666 - 3692
  • [34] Nitrogen-Based Catalysts for the Electrochemical Reduction of CO2 to CO
    Tornow, Claire E.
    Thorson, Michael R.
    Ma, Sichao
    Gewirth, Andrew A.
    Kenis, Paul J. A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (48) : 19520 - 19523
  • [35] Evolution of Cu single atom catalysts to nanoclusters during CO2 reduction to CO
    Yan, Liu
    Liang, Xiao-Du
    Sun, Yue
    Xiao, Liang-Ping
    Lu, Bang-An
    Li, Guang
    Li, Yu-Yang
    Hong, Yu-Hao
    Wan, Li-Yang
    Chen, Chi
    Yang, Jian
    Zhou, Zhi-You
    Tian, Na
    Sun, Shi-Gang
    CHEMICAL COMMUNICATIONS, 2022, 58 (15) : 2488 - 2491
  • [36] Advances in Sn?Based Catalysts for Electrochemical CO2 Reduction
    Shulin Zhao
    Sheng Li
    Tao Guo
    Shuaishuai Zhang
    Jing Wang
    Yuping Wu
    Yuhui Chen
    Nano-Micro Letters, 2019, (04) : 114 - 132
  • [37] Carbon-based catalysts for electrochemical CO2 reduction
    Jia, Chen
    Dastafkan, Kamran
    Ren, Wenhao
    Yang, Wanfeng
    Zhao, Chuan
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (11): : 2890 - 2906
  • [38] A new strategy for mass production of single-atom catalysts for high performance of CO2 electrochemical reduction
    Han, Shitao
    Jia, Shuaiqiang
    Xia, Wei
    Xing, Xueqing
    Qi, Ruijuan
    Wu, Haihong
    He, Mingyuan
    Han, Buxing
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [39] S and N coordinated single-atom catalysts for electrochemical CO2 reduction with superior activity and selectivity
    Hou, Pengfei
    Huang, Yuhong
    Ma, Fei
    Wei, Xiumei
    Du, Ruhai
    Zhu, Gangqiang
    Zhang, Jianmin
    Wang, Min
    APPLIED SURFACE SCIENCE, 2023, 619
  • [40] The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction
    Qu, Qingyun
    Ji, Shufang
    Chen, Yuanjun
    Wang, Dingsheng
    Li, Yadong
    CHEMICAL SCIENCE, 2021, 12 (12) : 4201 - 4215