On primitive representations of finite alternating and symmetric groups with a 2-transitive subconstituent

被引:6
作者
Praeger, CE [1 ]
Wang, J [1 ]
机构
[1] BEIJING UNIV,DEPT MATH,BEIJING 100871,PEOPLES R CHINA
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
D O I
10.1006/jabr.1996.0094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we analyse primitive permutation representations of finite alternating and symmetric groups which have a 2-transitive subconstituent. We show that either the representation belongs to an explicit list of known examples, or the point stabiliser is a known almost-simple 2-transitive group and acts primitively in the natural representation of the associated alternating or symmetric group. (C) 1996 Academic Press, Inc.
引用
收藏
页码:808 / 833
页数:26
相关论文
共 31 条
[1]  
[Anonymous], 1982, U SERIES MATH
[2]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[3]   2-ARC TRANSITIVE GRAPHS AND TWISTED WREATH-PRODUCTS [J].
BADDELEY, RW .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (03) :215-237
[4]  
Cameron P.J., 1974, B LOND MATH SOC, V6, P1
[5]  
CAMERON PJ, 1982, J LOND MATH SOC, V25, P62
[6]  
CAMERON PJ, 1972, P LOND MATH SOC, V25, P427
[7]   FINITE PERMUTATION-GROUPS AND FINITE SIMPLE-GROUPS [J].
CAMERON, PJ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1981, 13 (JAN) :1-22
[8]  
CANNON JJ, 1982, COMPUTATIONAL GROUP, P145
[9]  
Conway J., 1985, ATLAS FINITE GROUPS
[10]  
DIEUDONNE J, 1951, MEM AM MATH SOC, V2, P1