A note on mean-field variational approximations in Bayesian probit models

被引:4
作者
Armagan, Artin [1 ]
Zaretzki, Russell L. [2 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Univ Tennessee, Dept Stat Operat & Management Sci, Knoxville, TN 37996 USA
关键词
Variational inference; Bayesian probit model; Gibbs sampling;
D O I
10.1016/j.csda.2010.06.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We correct some conclusions presented by Consonni and Mann (2007) on the performance of mean-field variational approximations to Bayesian inferences in the case of a simple probit model. We show that some of their presentations are misleading and thus their results do not fairly present the performance of such approximations in terms of point estimation under the specified model. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:641 / 643
页数:3
相关论文
共 5 条
[1]  
ALBERT JH, 1993, J AM STAT ASS, V88
[2]   Mean-field variational approximate Bayesian inference for latent variable models [J].
Consonni, Guido ;
Marin, Jean-Michel .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (02) :790-798
[3]   Adaptive sparseness for supervised learning [J].
Figueiredo, MAT .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (09) :1150-1159
[4]   Bayesian parameter estimation via variational methods [J].
Jaakkola, TS ;
Jordan, MI .
STATISTICS AND COMPUTING, 2000, 10 (01) :25-37
[5]  
JORDAN MI, 1999, INTRO VARIATIONAL ME, P105