Detecting nanoscale vibrations as signature of life

被引:114
作者
Kasas, Sandor [1 ,2 ]
Ruggeri, Francesco Simone [1 ]
Benadiba, Carine [1 ]
Maillard, Caroline [1 ]
Stupar, Petar [1 ]
Tournu, Helene [3 ]
Dietler, Giovanni [1 ]
Longo, Giovanni [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Phys Mat Vivante, Inst Phys Syst Biol, Fac Sci Base, CH-1015 Lausanne, Switzerland
[2] Univ Lausanne, Dept Neurosci Fondamentales, Fac Biol & Med, CH-1005 Lausanne, Switzerland
[3] VIB, Dept Mol Microbiol, B-3001 Leuven, Belgium
关键词
nanomechanical sensors; extraterrestrial life; nanoscale fluctuations; living specimens; nanomotion detector; NANOMECHANICAL SENSORS; CANTILEVER ARRAY; MICROSCOPY; RESISTANCE; BINDING;
D O I
10.1073/pnas.1415348112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.
引用
收藏
页码:378 / 381
页数:4
相关论文
共 23 条
[1]   EFFECT OF ENVIRONMENTAL CONDITIONS ON MOTILITY OF ESCHERICHIA COLI [J].
ADLER, J ;
TEMPLETON, B .
JOURNAL OF GENERAL MICROBIOLOGY, 1967, 46 :175-+
[2]   Combination of fluorescence microscopy and nanomotion detection to characterize bacteria [J].
Aghayee, S. ;
Benadiba, C. ;
Notz, J. ;
Kasas, S. ;
Dietler, G. ;
Longo, G. .
JOURNAL OF MOLECULAR RECOGNITION, 2013, 26 (11) :590-595
[3]   Real-Time Monitoring of Protein Conformational Changes Using a Nano-Mechanical Sensor [J].
Alonso-Sarduy, Livan ;
De Los Rios, Paolo ;
Benedetti, Fabrizio ;
Vobornik, Dusan ;
Dietler, Giovanni ;
Kasas, Sandor ;
Longo, Giovanni .
PLOS ONE, 2014, 9 (07)
[4]   Microcantilever-based platforms as biosensing tools [J].
Alvarez, Mar ;
Lechuga, Laura M. .
ANALYST, 2010, 135 (05) :827-836
[5]   Cantilever-like micromechanical sensors [J].
Boisen, Anja ;
Dohn, Soren ;
Keller, Stephan Sylvest ;
Schmid, Silvan ;
Tenje, Maria .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (03)
[6]  
Braun T, 2009, NAT NANOTECHNOL, V4, P179, DOI [10.1038/NNANO.2008.398, 10.1038/nnano.2008.398]
[7]   Thermomechanical noise of nanooscillators with time-dependent mass [J].
Djuric, Zoran G. ;
Jokic, Ivana M. .
MICROELECTRONIC ENGINEERING, 2007, 84 (5-8) :1639-1642
[8]   Translating biomolecular recognition into nanomechanics [J].
Fritz, J ;
Baller, MK ;
Lang, HP ;
Rothuizen, H ;
Vettiger, P ;
Meyer, E ;
Güntherodt, HJ ;
Gerber, C ;
Gimzewski, JK .
SCIENCE, 2000, 288 (5464) :316-318
[9]   Cantilever-based sensing: the origin of surface stress and optimization strategies [J].
Godin, Michel ;
Tabard-Cossa, Vincent ;
Miyahara, Yoichi ;
Monga, Tanya ;
Williams, P. J. ;
Beaulieu, L. Y. ;
Lennox, R. Bruce ;
Grutter, Peter .
NANOTECHNOLOGY, 2010, 21 (07)
[10]   Microcantilever biosensors [J].
Hansen, KM ;
Thundat, T .
METHODS, 2005, 37 (01) :57-64