ε-subdifferential and ε-monotonicity

被引:48
作者
Jofre, A
Luc, DT
Thera, M
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Inst Math, Hanoi 10000, Vietnam
[3] Univ Limoges, LACO, ESA 6090, F-87060 Limoges, France
关键词
convex function; mean-value theorem; nonsmooth analysis; generalized differentiation; extended-real-valued functions; nonconvex calculus; Asplund spaces; sequential limit; monotonicity;
D O I
10.1016/S0362-546X(97)00511-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:71 / 90
页数:20
相关论文
共 38 条
[1]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI
[2]   MEAN-VALUE PROPERTY AND SUBDIFFERENTIAL CRITERIA FOR LOWER SEMICONTINUOUS FUNCTIONS [J].
AUSSEL, D ;
CORVELLEC, JN ;
LASSONDE, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (10) :4147-4161
[3]   OPTIMIZATION OF UPPER SEMIDIFFERENTIABLE FUNCTIONS [J].
BIHAIN, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1984, 44 (04) :545-568
[4]  
BORWEIN JM, 1995, J CONVEX ANAL SPEC 1, P259
[5]  
BORWEIN JM, 1987, T AM MATH SOC, V303, P513
[6]  
BUSTOS, 1994, NUMERICAL FUNCTIONAL, V15, P435
[7]   SUBGRADIENT CRITERIA FOR MONOTONICITY, THE LIPSCHITZ CONDITION, AND CONVEXITY [J].
CLARKE, FH ;
STERN, RJ ;
WOLENSKI, PR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06) :1167-1183
[8]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[9]   SUBDIFFERENTIAL MONOTONICITY AS CHARACTERIZATION OF CONVEX-FUNCTIONS [J].
CORREA, R ;
JOFRE, A ;
THIBAULT, L .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (5-6) :531-535
[10]  
CORREA R, 1992, P AM MATH SOC, V116, P67