Infinitely many positive solutions to some nonsymmetric scalar field equations: the planar case

被引:13
作者
Devillanova, G. [1 ]
Solimini, S. [1 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
关键词
35B38; 35J20; 35J60;
D O I
10.1007/s00526-014-0736-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of infinitely many positive solutions u is an element of H-1(R-2) to the equation -Delta u + a(x) u = u(p), with p > 1, without asking, on the positive potential a(x), any symmetry assumption as in Wei and Yan (Calc Var Partial Differ Equ 37, 423-439, 2010) or Devillanova and Solimini (Adv Nonlinear Studies 12, 173-186, 2012) or small oscillation assumption as in Cerami et al. (Commun Pure Appl Math, doi: 10.1002/cpa.21410, 2012) and in Weiwei and Wei (Infinitely many positive solutions for Nonlinear equations with non-symmetric Potential, 2012).
引用
收藏
页码:857 / 898
页数:42
相关论文
共 16 条
[1]   Infinitely Many Positive Solutions to Some Scalar Field Equations with Nonsymmetric Coefficients [J].
Cerami, Giovanna ;
Passaseo, Donato ;
Solimini, Sergio .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (03) :372-413
[2]  
Del Pino M., 2012, ARXIV13097196
[3]  
Devillanova G, 2012, ADV NONLINEAR STUD, V12, P173
[4]  
Heinonen J., 2006, Nonlinear Potential Theory of Degenerate Elliptic Equations
[5]   VARIATIONAL AND TOPOLOGICAL METHODS IN PARTIALLY ORDERED HILBERT-SPACES [J].
HOFER, H .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :493-514
[6]  
Kinderlehrer D., 1980, An introduction to variational inequalities and their applications, V88
[7]  
KWONG MK, 1989, ARCH RATION MECH AN, V105, P243
[8]  
Miranda C., 1940, Boll. Un. Mat. Ital, V3, P5
[9]  
SOLIMINI S, 1995, ANN I H POINCARE-AN, V12, P319
[10]  
Solimini S., 1987, REV MAT APL, V9-1, P75