Exploiting a New Interpretability Index in the Multi-Objective Evolutionary Learning of Mamdani Fuzzy Rule-based Systems

被引:4
作者
Antonelli, Michela [1 ]
Ducange, Pietro [1 ]
Lazzerini, Beatrice [1 ]
Marcelloni, Francesco [1 ]
机构
[1] Univ Pisa, Dipartimento Ingn Informaz, Pisa, Italy
来源
2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS | 2009年
关键词
Mamdani Fuzzy Rule-based Systems; Multiobjective Evolutionary Algorithms; Interpretability Index; Accuracy-Interpretability trade-off; Piecewise Linear Transformation; ADAPTATION; ALGORITHMS; SELECTION;
D O I
10.1109/ISDA.2009.166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a new index for evaluating the interpretability of Mamdani fuzzy rule-based systems (MFRBSs). The index takes both the rule base complexity and the data base integrity into account. We discuss the use of this index in the multi-objective evolutionary generation of MFRBSs with different trade-offs between accuracy and interpretability. The rule base and the membership function parameters of the MFRBSs are learnt concurrently by exploiting an appropriate chromosome coding and purposely-defined genetic operators. Results on a real-world regression problem are shown and discussed.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 16 条
[1]   A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems [J].
Alcala, R. ;
Gacto, M. J. ;
Herrera, F. ;
Alcala-Fdez, J. .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2007, 15 (05) :539-557
[2]   A Multiobjective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy-Rule-Based Systems [J].
Alcala, Rafael ;
Ducange, Pietro ;
Herrera, Francisco ;
Lazzerini, Beatrice ;
Marcelloni, Francesco .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2009, 17 (05) :1106-1122
[3]   HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism [J].
Alonso, Jose M. ;
Magdalena, Luis ;
Guillaume, Serge .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2008, 23 (07) :761-794
[4]   Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework [J].
Antonelli, Michela ;
Ducange, Pietro ;
Lazzerini, Beatrice ;
Marcelloni, Francesco .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2009, 50 (07) :1066-1080
[5]   Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index [J].
Botta, Alessio ;
Lazzerini, Beatrice ;
Marcelloni, Francesco ;
Stefanescu, Dan C. .
SOFT COMPUTING, 2009, 13 (05) :437-449
[6]   A Pareto-based multi-objective evolutionary approach to the identification of Mamdani fuzzy systems [J].
Cococcioni, Marco ;
Ducange, Pietro ;
Lazzerini, Beatrice ;
Marcelloni, Francesco .
SOFT COMPUTING, 2007, 11 (11) :1013-1031
[7]   Solving electrical distribution problems using hybrid evolutionary data analysis techniques [J].
Cordón, O ;
Herrera, F ;
Sánchez, L .
APPLIED INTELLIGENCE, 1999, 10 (01) :5-24
[8]   Semantic constraints for membership function optimization [J].
de Oliveira, JV .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1999, 29 (01) :128-138
[9]   Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets [J].
Ducange, Pietro ;
Lazzerini, Beatrice ;
Marcelloni, Francesco .
SOFT COMPUTING, 2010, 14 (07) :713-728
[10]   Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems [J].
Gacto, Maria Jose ;
Alcala, Rafael ;
Herrera, Francisco .
SOFT COMPUTING, 2009, 13 (05) :419-436