Automorphism groups of centralizers of idempotents

被引:35
作者
Araújo, J
Konieczny, J [1 ]
机构
[1] Mary Washington Coll, Dept Math, Fredericksburg, VA 22401 USA
[2] Univ Aberta, R Escola Politecn, P-1269001 Lisbon, Portugal
[3] Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, Portugal
关键词
automorphism group; transformation semigroup; inner automorphism; centralizer; idempotent;
D O I
10.1016/S0021-8693(03)00499-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a set X, an equivalence relation rho on X, and a cross-section R of the partition X/rho, consider the following subsemigroup of the semigroup T(X) of full transformations on X: T(X, rho, R) = {a is an element of T(X): Ra subset of or equal to R and (x, y) is an element of rho double right arrow (xa, ya) is an element of rho}. The semigroup T(X, rho, R) is the centralizer of the idempotent transformation with kernel rho and image R. We prove that the automorphisms of T(X, rho, R) are the inner automorphisms induced by the units of T(X, rho, R) and that the automorphism group of T(X, rho, R) is isomorphic to the group of units of T(X, rho, R). (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 9 条
[1]  
Howie J. M., 1995, FUNDAMENTALS SEMIGRO
[2]   AUTOMORPHISMS OF NORMAL PARTIAL TRANSFORMATION SEMIGROUPS [J].
LEVI, I .
GLASGOW MATHEMATICAL JOURNAL, 1987, 29 :149-157
[4]  
Liber A. E., 1953, MAT SBORNIK NS, V33, P531
[5]  
Magill KDJr, 1967, J. Austral. Math. Soc. Ser. A, V7, P81, DOI 10.1017/S1446788700005115
[6]  
Mal'cev A.I., 1952, MAT SBORNIK, V31, P136
[7]  
SCHREIER I, 1936, FUND MATH, V28, P261
[8]  
Shutov E. G., 1961, IZV VYSS UCEBN ZAVED, P177
[9]  
Sullivan R. P., 1975, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V20, P77