Design of Asymptotically Stabilizing State Feedback Controllers for 2-D Discrete Control Systems

被引:0
作者
Nishikawa, Tomoko [1 ]
Izuta, Guido [1 ]
机构
[1] Yonezawa Womens Coll, Dept Social Sci Informat, Yonezawa, Yamagata 9920025, Japan
来源
2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION | 2015年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper is aimed to establish a feedback controller design procedure for a relatively general type of 2-D (2-dimensional) discrete control systems be asymptotically stable. To achieve this purpose, the system represented by the system of partial difference equations is handled on the grounds of the Lagrange method. Briefly, the controllers are required to diagonalize the matrices of the set of partial difference equations describing the resulting feedback control system. The results are gathered in a controller design algorithm. Finally, a numerical example is given to show the mechanics of the controller design procedure.
引用
收藏
页码:557 / 562
页数:6
相关论文
共 22 条
[1]   STABILITY OF MULTIDIMENSIONAL DIGITAL-FILTERS [J].
ANDERSON, BD ;
JURY, EI .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1974, AS21 (02) :300-304
[2]  
[Anonymous], 2007, CONTROL SYSTEMS THEO
[3]  
Attasi S., 1973, Systemes lineaires homogenes a deux indices
[4]  
Bose N.K., 1982, APPL MULTIDIMENSIONA
[5]  
Cheng S.S., 2003, Partial Difference Equations
[6]  
Du C., 2002, H_infinity Control and Filtering of Two-Dimensional Systems
[7]  
Elaydi S., 2005, An Introduction to Difference Equations, V3rd ed.
[8]   STABILITY ANALYSIS OF 2-D SYSTEMS [J].
FORNASINI, E ;
MARCHESINI, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1980, 27 (12) :1210-1217
[9]   DOUBLY-INDEXED DYNAMICAL-SYSTEMS - STATE-SPACE MODELS AND STRUCTURAL-PROPERTIES [J].
FORNASINI, E ;
MARCHESINI, G .
MATHEMATICAL SYSTEMS THEORY, 1978, 12 (01) :59-72
[10]   MULTIDIMENSIONAL LINEAR ITERATIVE CIRCUITS - GENERAL PROPERTIES [J].
GIVONE, DD ;
ROESSER, RP .
IEEE TRANSACTIONS ON COMPUTERS, 1972, C 21 (10) :1067-&