Small-scale scattering heterogeneities beneath the northern Tien Shan from the teleseismic P wavefield
被引:1
|
作者:
Ma, Xiaolong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, State Key Lab Isotope Geochem, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R ChinaChinese Acad Sci, State Key Lab Isotope Geochem, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China
Ma, Xiaolong
[1
]
Huang, Zongying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, State Key Lab Isotope Geochem, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R ChinaChinese Acad Sci, State Key Lab Isotope Geochem, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China
Huang, Zongying
[1
]
机构:
[1] Chinese Acad Sci, State Key Lab Isotope Geochem, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China
来源:
EARTH PLANETS AND SPACE
|
2020年
/
72卷
/
01期
基金:
中国国家自然科学基金;
关键词:
P-wave coda;
Small-scale scattering heterogeneities;
Random media;
Monte Carlo simulation;
Melt pockets;
Upwelling mantle materials;
3-DIMENSIONAL RANDOM-MEDIA;
FREQUENCY SEISMIC-WAVES;
UPPER-MANTLE STRUCTURE;
GROUND-MOTION;
SEISMOGRAM ENVELOPES;
MULTIPLE-SCATTERING;
RECEIVER FUNCTION;
LITHOSPHERIC HETEROGENEITY;
PARABOLIC APPROXIMATION;
INTRINSIC ATTENUATION;
D O I:
10.1186/s40623-020-1136-1
中图分类号:
P [天文学、地球科学];
学科分类号:
07 ;
摘要:
In order to investigate the small-scale scattering heterogeneities underneath the northern Tien Shan, we analyze the P wavefield from teleseismic events. By using the teleseismic fluctuation method, we separate the total wavefield into coherent and fluctuating parts in the frequency band of 0.1-8.0 Hz. Subsequently, we investigate the scattering characteristics by analyzing the frequency-dependent intensities of the coherent and fluctuating wavefield between 0.3 and 2.5 Hz. We further constrain the velocity perturbations and correlation lengths by modeling the P-wave coda envelope with the Monte Carlo simulation. Strong scattering heterogeneities are revealed beneath the northern Tien Shan. The preferred scattering model can be described as a 55- to 130-km-thick randomly heterogeneous layer with velocity perturbations of 6-9% and correlation lengths on the order of 0.4 km. We attribute these small-scale scatterers to isolated melt pockets from the upwelling hot mantle materials.