Approximation of an Additive (ρ1, ρ2)-Random Operator Inequality

被引:8
作者
Jang, Sun Young [1 ]
Saadati, Reza [2 ]
机构
[1] Univ Ulsan, Dept Math, Ulsan 44610, South Korea
[2] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
基金
新加坡国家研究基金会;
关键词
FUNCTIONAL INEQUALITIES; STABILITY; DERIVATIONS;
D O I
10.1155/2020/7540303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the additive (rho(1), rho(2))-random operator inequality xi(T(omega, u+v)-T(omega, u)- T(omega, v))(t) >= kappa(M) (xi(rho 1(T(omega, u+v)+T(omega, u-v)-2T(omega, u)))(t) , xi(rho 1(2T(omega,((u+v)/2))-T(omega,u)-T(omega,v)))(t)), in which rho(1), rho(2) epsilon C are fixed and max {root 2 vertical bar rho(1)vertical bar, vertical bar rho(2)vertical bar } < 1. Finally, we get an approximation of the mentioned additive (rho(1), rho(2))-random operator inequality by direct technique.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Approximation of the multiplicatives on random multi-normed space [J].
Agarwal, Ravi P. ;
Saadati, Reza ;
Salamati, Ali .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[2]  
Belfakih K., 2018, J NONLINEAR SCI APPL, V11, P894, DOI DOI 10.22436/JNSA.011.07.03
[3]   On fuzzy normed algebras [J].
Binzar, Tudor ;
Pater, Flavius ;
Nadaban, Sorin .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (09) :5488-5496
[4]   A fixed point theorem in n-Banach spaces and Ulam stability [J].
Brzdek, Janusz ;
Cieplinski, Krzysztof .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) :632-646
[5]  
Cadariu L., 2003, J. Inequal. Pure Appl. Math., V4, P7
[6]  
Cadariu L, 2013, J NONLINEAR SCI APPL, V6, P60
[7]  
Cdariu L., 2002, AUTOMATION COMPUTERS, V11, P27
[8]  
Ding Y., 2018, J. Nonlinear. Sci. Appl, V11, P953, DOI [10.22436/jnsa.011.08.02, DOI 10.22436/JNSA.011.08.02]
[9]  
El-Moneam M.A., 2019, J. Nonlinear Sci. Appl, V12, P65, DOI 10.22436/jnsa.012.02.01
[10]   Stability of a composite functional equation related to idempotent mappings [J].
Fechner, Wlodzimierz .
JOURNAL OF APPROXIMATION THEORY, 2011, 163 (03) :328-335