PD-1 blockade therapy augments the antitumor effects of lymphodepletion and adoptive T cell transfer

被引:1
作者
Takahashi, Miho [1 ]
Watanabe, Satoshi [1 ]
Suzuki, Ryo [1 ]
Arita, Masashi [1 ]
Sato, Ko [1 ]
Sato, Miyuki [1 ]
Sekiya, Yuki [1 ]
Abe, Yuko [1 ]
Fujisaki, Toshiya [1 ]
Ohtsubo, Aya [1 ]
Shoji, Satoshi [1 ]
Nozaki, Koichiro [1 ]
Ichikawa, Kosuke [1 ]
Kondo, Rie [1 ]
Saida, Yu [1 ]
Hokari, Satoshi [1 ]
Aoki, Nobumasa [1 ]
Hayashi, Masachika [1 ]
Ohshima, Yasuyoshi [1 ]
Koya, Toshiyuki [1 ]
Kikuchi, Toshiaki [1 ]
机构
[1] Niigata Univ, Grad Sch Med & Dent Sci, Dept Resp Med & Infect Dis, Niigata, Niigata, Japan
关键词
Lymphodepletion; PD-1; T cell; Immune checkpoint; NIVOLUMAB; IMMUNOTHERAPY; CANCER; IMMUNITY; PROLIFERATION; DYSFUNCTION; EXHAUSTION; DOCETAXEL; SURVIVAL; EFFICACY;
D O I
10.1007/s00262-021-03078-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Lymphodepleting cytotoxic regimens enhance the antitumor effects of adoptively transferred effector and naive T cells. Although the mechanisms of antitumor immunity augmentation by lymphodepletion have been intensively investigated, the effects of lymphodepletion followed by T cell transfer on immune checkpoints in the tumor microenvironment remain unclear. The current study demonstrated that the expression of immune checkpoint molecules on transferred donor CD4(+) and CD8(+) T cells was significantly decreased in lymphodepleted tumor-bearing mice. In contrast, lymphodepletion did not reduce immune checkpoint molecule levels on recipient CD4(+) and CD8(+) T cells. Administration of anti-PD-1 antibodies after lymphodepletion and adoptive transfer of T cells significantly inhibited tumor progression. Further analysis revealed that transfer of both donor CD4(+) and CD8(+) T cells was responsible for the antitumor effects of a combination therapy consisting of lymphodepletion, T cell transfer and anti-PD-1 treatment. Our findings indicate that a possible mechanism underlying the antitumor effects of lymphodepletion followed by T cell transfer is the prevention of donor T cell exhaustion and dysfunction. PD-1 blockade may reinvigorate exhausted recipient T cells and augment the antitumor effects of lymphodepletion and adoptive T cell transfer.
引用
收藏
页码:1357 / 1369
页数:13
相关论文
共 44 条
[1]   Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia [J].
Baba, Junko ;
Watanabe, Satoshi ;
Saida, Yu ;
Tanaka, Tomohiro ;
Miyabayashi, Takao ;
Koshio, Jun ;
Ichikawa, Kosuke ;
Nozaki, Koichiro ;
Koya, Toshiyuki ;
Deguchi, Katsuya ;
Tan, Chunrui ;
Miura, Satoru ;
Tanaka, Hiroshi ;
Tanaka, Junta ;
Kagamu, Hiroshi ;
Yoshizawa, Hirohisa ;
Nakata, Ko ;
Narita, Ichiei .
BLOOD, 2012, 120 (12) :2417-2427
[2]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[3]   Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma in the Polish population [J].
Brzezianska, Ewa ;
Karbownik, Malgorzata ;
Migdalska-Sek, Monika ;
Pastuszak-Lewandoska, Dorota ;
Wloch, Jan ;
Lewinski, Andrzej .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2006, 599 (1-2) :26-35
[4]   Chemoimmunotherapy: reengineering tumor immunity [J].
Chen, Gang ;
Emens, Leisha A. .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2013, 62 (02) :203-216
[5]   T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment [J].
Crespo, Joel ;
Sun, Haoyu ;
Welling, Theodore H. ;
Tian, Zhigang ;
Zou, Weiping .
CURRENT OPINION IN IMMUNOLOGY, 2013, 25 (02) :214-221
[6]   T cell homeostatic proliferation elicits effective antitumor autoimmunity [J].
Dummer, W ;
Niethammer, AG ;
Baccala, R ;
Lawson, BR ;
Wagner, N ;
Reisfeld, RA ;
Theofilopoulos, AN .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 110 (02) :185-192
[7]   Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck [J].
Ferris, R. L. ;
Blumenschein, G., Jr. ;
Fayette, J. ;
Guigay, J. ;
Colevas, A. D. ;
Licitra, L. ;
Harrington, K. ;
Kasper, S. ;
Vokes, E. E. ;
Even, C. ;
Worden, F. ;
Saba, N. F. ;
Iglesias Docampo, L. C. ;
Haddad, R. ;
Rordorf, T. ;
Kiyota, N. ;
Tahara, M. ;
Monga, M. ;
Lynch, M. ;
Geese, W. J. ;
Kopit, J. ;
Shaw, J. W. ;
Gillison, M. L. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (19) :1856-1867
[8]   Myeloid-Derived Suppressor Cells [J].
Gabrilovich, Dmitry I. .
CANCER IMMUNOLOGY RESEARCH, 2017, 5 (01) :3-8
[9]   The secret ally: immunostimulation by anticancer drugs [J].
Galluzzi, Lorenzo ;
Senovilla, Laura ;
Zitvogel, Laurence ;
Kroemer, Guido .
NATURE REVIEWS DRUG DISCOVERY, 2012, 11 (03) :215-233
[10]   Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer [J].
Gandhi, L. ;
Rodriguez-Abreu, D. ;
Gadgeel, S. ;
Esteban, E. ;
Felip, E. ;
De Angelis, F. ;
Domine, M. ;
Clingan, P. ;
Hochmair, M. J. ;
Powell, S. F. ;
Cheng, S. Y. -S. ;
Bischoff, H. G. ;
Peled, N. ;
Grossi, F. ;
Jennens, R. R. ;
Reck, M. ;
Hui, R. ;
Garon, E. B. ;
Boyer, M. ;
Rubio-Viqueira, B. ;
Novello, S. ;
Kurata, T. ;
Gray, J. E. ;
Vida, J. ;
Wei, Z. ;
Yang, J. ;
Raftopoulos, H. ;
Pietanza, M. C. ;
Garassino, M. C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (22) :2078-2092