Evolution-algorithm-based unmanned aerial vehicles path planning in complex environment

被引:23
作者
Liu, Xiaolei [1 ]
Du, Xiaojiang [2 ]
Zhang, Xiaosong [3 ]
Zhu, Qingxin [1 ]
Guizani, Mohsen [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu, Sichuan, Peoples R China
[2] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
[3] Univ Elect Sci & Technol China, Ctr Cyber Secur, Chengdu, Sichuan, Peoples R China
[4] Qatar Univ, Dept Comp Sci & Engn, Doha, Qatar
基金
中国国家自然科学基金;
关键词
UAV; Dynamic planning; Path planning; Evolution algorithm; UAV; PROTOCOL;
D O I
10.1016/j.compeleceng.2019.106493
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the wide application of Unmanned Aerial Vehicles (UAVs) in production and life, more and more attention has been paid to the autonomous track planning of UAVs. When UAV path planning algorithm is dealing with flying in an unknown complex environment, there are some problems, such as inability to dynamically plan the track and slow speed to calculate the path. This paper proposes a dynamic path planning based on an improved evolutionary optimization algorithm. The experimental results show that the evolutionary optimization algorithm based on improved t-distribution can effectively deal with the problems of high computational complexity and low search efficiency encountered in UAV dynamic track planning. It has strong robustness and can dynamically plan the appropriate track. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time [J].
Avellar, Gustavo S. C. ;
Pereira, Guilherme A. S. ;
Pimenta, Luciano C. A. ;
Iscold, Paulo .
SENSORS, 2015, 15 (11) :27783-27803
[2]   UAV path planning using artificial potential field method updated by optimal control theory [J].
Chen, Yong-bo ;
Luo, Guan-chen ;
Mei, Yue-song ;
Yu, Jian-qiao ;
Su, Xiao-long .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (06) :1407-1420
[3]   Modified central force optimization (MCFO) algorithm for 3D UAV path planning [J].
Chen, Yongbo ;
Yu, Jianqiao ;
Mei, Yuesong ;
Wang, Yafei ;
Su, Xiaolong .
NEUROCOMPUTING, 2016, 171 :878-888
[4]   A multi-objective green UAV routing problem [J].
Coelho, Bruno N. ;
Coelho, Vitor N. ;
Coelho, Igor M. ;
Ochi, Luiz S. ;
Haghnazar, Roozbeh K. ;
Zuidema, Demetrius ;
Lima, Milton S. F. ;
da Costa, Adilson R. .
COMPUTERS & OPERATIONS RESEARCH, 2017, 88 :306-315
[5]   A Routing-Driven Elliptic Curve Cryptography Based Key Management Scheme for Heterogeneous Sensor Networks [J].
Du, Xiaojiang ;
Guizani, Mohsen ;
Xiao, Yang ;
Chen, Hsiao-Hwa .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2009, 8 (03) :1223-1229
[6]  
Du XJ, 2005, IEEE IPCCC, P51
[7]  
Enright J.J., 2015, Uav routing and coordination in stochastic, dynamic environments, P2079, DOI [DOI 10.1007/978-90-481-9707-1_28, 10.1007/978-90-481-9707-1set minus_28]
[8]  
Huanyu Ding, 2016, 2016 IEEE Conference on Control Applications (CCA), P368, DOI 10.1109/CCA.2016.7587859
[9]  
Jakobovic D., 1999, Journal of Computing and Information Technology - CIT, V7, P229
[10]   Modified t-Distribution Evolutionary Algorithm for Dynamic Deployment of Wireless Sensor Networks [J].
Liu, Xiaolei ;
Zhang, Xiaosong ;
Jiang, Yiqi ;
Zhu, Qingxin .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (06) :1595-1602