Finite-time stability analysis of fractional-order neural networks with delay

被引:143
作者
Yang, Xujun [1 ]
Song, Qiankun [1 ]
Liu, Yurong [2 ,3 ]
Zhao, Zhenjiang [4 ]
机构
[1] Chongqing Jiaotong Univ, Sch Management, Chongqing 400074, Peoples R China
[2] Yangzhou Univ, Dept Math, Yangzhou 225002, Jiangsu, Peoples R China
[3] King Abdulaziz Univ, Fac Engn, Commun Syst & Networks CSN Res Grp, Jeddah 21589, Saudi Arabia
[4] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order neural networks; Equilibrium point; Existence; Uniqueness; Finite-time stability; GLOBAL EXPONENTIAL STABILITY; NONLINEAR-SYSTEMS; STABILIZATION; DYNAMICS;
D O I
10.1016/j.neucom.2014.11.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stability analysis of fractional-order neural networks with delay is addressed in this paper. By using the contracting mapping principle, method of iteration and inequality techniques, a sufficient condition is established to ensure the existence, uniqueness and finite-time stability of the equilibrium point of the proposed networks. Finally, based on the Predictor-Corrector Approach, two numerical examples are presented to illustrate the validity and feasibility of the obtained result. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 47 条
[1]  
Alofi A., 2014, DISCRETE DYNAMICS NA, V2014
[2]   Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems [J].
Amato, F. ;
De Tommasi, G. ;
Pironti, A. .
AUTOMATICA, 2013, 49 (08) :2546-2550
[3]  
[Anonymous], 1990, Funkcialaj Ekvacioj
[4]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[5]  
Boroomand A, 2009, LECT NOTES COMPUT SC, V5506, P883, DOI 10.1007/978-3-642-02490-0_108
[6]   Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks [J].
Chen, Jiejie ;
Zeng, Zhigang ;
Jiang, Ping .
NEURAL NETWORKS, 2014, 51 :1-8
[7]   Dynamic analysis of a class of fractional-order neural networks with delay [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao ;
Ma, Tiedong ;
Zhai, Houzhen .
NEUROCOMPUTING, 2013, 111 :190-194
[8]   Stability analysis for closed-loop management of a reservoir based on identification of reduced-order nonlinear model [J].
Chen, Yingying ;
Hoo, Karlene A. .
SYSTEMS SCIENCE & CONTROL ENGINEERING, 2013, 1 (01) :12-19
[9]  
Corduneanu Constantine., 1971, Principles of Differential and Integral Equations
[10]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22