Geometry and arithmetic of certain double octic Calabi-Yau manifolds

被引:11
作者
Cynk, S
Meyer, C
机构
[1] Jagiellonian Univ, Inst Matemat, PL-30059 Krakow, Poland
[2] Univ Mainz, Fachbereich Math & Informat, D-55099 Mainz, Germany
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2005年 / 48卷 / 02期
关键词
Calabi-Yau; double coverings; modular forms;
D O I
10.4153/CMB-2005-016-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Calabi-Yau manifolds constructed as double coverings of P-3 branched along an octic surface. We give a list of 87 examples corresponding to arrangements of eight planes defined over Q. The Hodge numbers are computed for all examples. There are 10 rigid Calabi-Yau manifolds and 14 families with h(1,2) = 1. The modularity conjecture is verified for all the rigid examples.
引用
收藏
页码:180 / 194
页数:15
相关论文
共 50 条
  • [21] On symmetric, smooth and Calabi-Yau algebras
    Braun, Amiram
    JOURNAL OF ALGEBRA, 2007, 317 (02) : 519 - 533
  • [23] ON THE GLOBAL MODULI OF CALABI-YAU THREEFOLDS
    Donagi, Ron
    Macerato, Mark
    Sharpe, Eric
    ASIAN JOURNAL OF MATHEMATICS, 2022, 26 (04) : 585 - 612
  • [24] On Calabi-Yau fractional complete intersections
    Lee, Tsung-Ju
    Lian, Bong H.
    Yau, Shing-Tung
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 317 - 342
  • [25] Calabi-Yau cones from contact reduction
    Diego Conti
    Anna Fino
    Annals of Global Analysis and Geometry, 2010, 38 : 93 - 118
  • [26] Calabi-Yau cones from contact reduction
    Conti, Diego
    Fino, Anna
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (01) : 93 - 118
  • [27] Stratified local moduli of Calabi-Yau threefolds
    Namikawa, Y
    TOPOLOGY, 2002, 41 (06) : 1219 - 1237
  • [28] Flops for complete intersection Calabi-Yau threefolds
    Brodie, Callum
    Constantin, Andrei
    Lukas, Andre
    Ruehle, Fabian
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186
  • [29] Global smoothing of Calabi-Yau threefolds II
    Namikawa, Y
    COMPOSITIO MATHEMATICA, 2001, 125 (01) : 55 - 68
  • [30] Gorenstein Formats, Canonical and Calabi-Yau Threefolds
    Brown, Gavin
    Kasprzyk, Alexander M.
    Zhu, Lei
    EXPERIMENTAL MATHEMATICS, 2019, : 146 - 164