Integration of metabolomics with genomics: Metabolic gene prioritization using metabolomics data and genomic variant (CADD) scores

被引:6
作者
Bongaerts, Michiel [1 ]
Bonte, Ramon [1 ]
Demirdas, Serwet [1 ]
Huidekoper, Hidde H. [2 ]
Langendonk, Janneke [3 ]
Wilke, Martina [1 ]
de Valk, Walter [1 ]
Blom, Henk J. [1 ]
Reinders, Marcel J. T. [4 ]
Ruijter, George J. G. [1 ]
机构
[1] Univ Med Ctr Rotterdam, Dept Clin Genet, Dr Molewaterplein 40,GD, NL-3015 GD Rotterdam, Netherlands
[2] Univ Med Ctr Rotterdam, Ctr Lysosomal & Metab Dis, Dept Pediat, Dr Molewaterplein 40,GD, NL-3015 GD Rotterdam, Netherlands
[3] Univ Med Ctr Rotterdam, Ctr Lysosomal & Metab Dis, Dept Internal Med, Dr Molewaterplein 40,GD, NL-3015 GD Rotterdam, Netherlands
[4] Delft Univ Technol, Fac Elect Engn, Math & Comp Sci, Mourik Broekmanweg 6,XE, NL-2628 XE Delft, Netherlands
关键词
Inborn errors of metabolism; ES; Untargeted metabolomics; Data integration; Metabolic pathways; CADD scores; DISEASE;
D O I
10.1016/j.ymgme.2022.05.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The integration of metabolomics data with sequencing data is a key step towards improving the diagnostic process for finding the disease-causing genetic variant(s) in patients suspected of having an inborn error of metabolism (IEM). The measured metabolite levels could provide additional phenotypical evidence to elucidate the degree of pathogenicity for variants found in genes associated with metabolic processes. We present a computational approach, called Reafect, that calculates for each reaction in a metabolic pathway a score indicating whether that reaction is deficient or not. When calculating this score, Reafect takes multiple factors into account: the magnitude and sign of alterations in the metabolite levels, the reaction distances between metabolites and reactions in the pathway, and the biochemical directionality of the reactions. We applied Reafect to untargeted metabolomics data of 72 patient samples with a known IEM and found that in 81% of the cases the correct deficient enzyme was ranked within the top 5% of all considered enzyme deficiencies. Next, we integrated Reafect with Combined Annotation Dependent Depletion (CADD) scores (a measure for gene variant deleteriousness) and ranked the metabolic genes of 27 IEM patients. We observed that this integrated approach significantly improved the prioritization of the genes containing the disease-causing variant when compared with the two approaches individually. For 15/27 IEM patients the correct affected gene was ranked within the top 0.25% of the set of potentially affected genes. Together, our findings suggest that metabolomics data improves the identification of affected genes in patients suffering from IEM.(c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:199 / 218
页数:20
相关论文
共 23 条
[1]   Integrated analysis of metabolomic profiling and exome data supplements sequence variant interpretation, classification, and diagnosis [J].
Alaimo, Joseph T. ;
Glinton, Kevin E. ;
Liu, Ning ;
Xiao, Jing ;
Yang, Yaping ;
Sutton, V. Reid ;
Elsea, Sarah H. .
GENETICS IN MEDICINE, 2020, 22 (09) :1560-1566
[2]   Supervised machine learning techniques for the classification of metabolic disorders in newborns [J].
Baumgartner, C ;
Böhm, C ;
Baumgartner, D ;
Marini, G ;
Weinberger, K ;
Olgemöller, B ;
Liebl, B ;
Roscher, AA .
BIOINFORMATICS, 2004, 20 (17) :2985-2996
[3]   Using Out-of-Batch Reference Populations to Improve Untargeted Metabolomics for Screening Inborn Errors of Metabolism [J].
Bongaerts, Michiel ;
Bonte, Ramon ;
Demirdas, Serwet ;
Jacobs, Edwin H. ;
Oussoren, Esmee ;
van der Ploeg, Ans T. ;
Wagenmakers, Margreet A. E. M. ;
Hofstra, Robert M. W. ;
Blom, Henk J. ;
Reinders, Marcel J. T. ;
Ruijter, George J. G. .
METABOLITES, 2021, 11 (01) :1-40
[4]   Untargeted Metabolomics-Based Screening Method for Inborn Errors of Metabolism using Semi-Automatic Sample Preparation with an UHPLC- Orbitrap-MS Platform [J].
Bonte, Ramon ;
Bongaerts, Michiel ;
Demirdas, Serwet ;
Langendonk, Janneke G. ;
Huidekoper, Hidde H. ;
Williams, Monique ;
Onkenhout, Willem ;
Jacobs, Edwin H. ;
Blom, Henk J. ;
Ruijter, George J. G. .
METABOLITES, 2019, 9 (12)
[5]   Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures.: Application in 1H NMR metabonomics [J].
Dieterle, Frank ;
Ross, Alfred ;
Schlotterbeck, Gotz ;
Senn, Hans .
ANALYTICAL CHEMISTRY, 2006, 78 (13) :4281-4290
[6]   metPropagate: network-guided propagation of metabolomic information for prioritization of metabolic disease genes [J].
Graham Linck, Emma J. ;
Richmond, Phillip A. ;
Tarailo-Graovac, Maja ;
Engelke, Udo ;
Kluijtmans, Leo A. J. ;
Coene, Karlien L. M. ;
Wevers, Ron A. ;
Wasserman, Wyeth ;
van Karnebeek, Clara D. M. ;
Mostafavi, Sara .
NPJ GENOMIC MEDICINE, 2020, 5 (01)
[7]   Untargeted Metabolomics for Metabolic Diagnostic Screening with Automated Data Interpretation Using a Knowledge-Based Algorithm [J].
Haijes, Hanneke A. ;
van der Ham, Maria ;
Prinsen, Hubertus C. M. T. ;
Broeks, Melissa H. ;
van Hasselt, Peter M. ;
de Sain-van der Velden, Monique G. M. ;
Verhoeven-Duif, Nanda M. ;
Jans, Judith J. M. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
[8]   KEGG: Kyoto Encyclopedia of Genes and Genomes [J].
Kanehisa, M ;
Goto, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :27-30
[9]   Cross-Omics: Integrating Genomics with Metabolomics in Clinical Diagnostics [J].
Kerkhofs, Marten H. P. M. ;
Haijes, Hanneke A. ;
Willemsen, A. Marcel ;
van Gassen, Koen L. I. ;
van der Ham, Maria ;
Gerrits, Johan ;
de Sain-van der Velden, Monique G. M. ;
Prinsen, Hubertus C. M. T. ;
van Deutekom, Hanneke W. M. ;
van Hasselt, Peter M. ;
Verhoeven-Duif, Nanda M. ;
Jans, Judith J. M. .
METABOLITES, 2020, 10 (05)
[10]  
Li H, 2009, BIOINFORMATICS, V25, P1754, DOI [10.1093/bioinformatics/btp324, 10.1093/bioinformatics/btp698, 10.1093/bioinformatics/btp352]