The transmission problem in domains with a corner point for the Laplace operator in weighted Holder spaces

被引:7
作者
Bazaliy, Borys V. [1 ]
Vasylyeva, Nataliya [1 ]
机构
[1] NAS Ukraine, Inst Appl Math & Mech, UA-83114 Donetsk, Ukraine
关键词
Elliptic equations; Transmission problem; Weighted Holder spaces; Nonsmooth domains; BOUNDARY-VALUE-PROBLEMS; REGULARITY; EQUATIONS;
D O I
10.1016/j.jde.2010.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence and uniqueness of a solution to the elliptic transmission problem in nonsmooth domains in the weighted Holder space. The coercive estimates of the solution are given. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2476 / 2499
页数:24
相关论文
共 20 条
[1]  
Adams A., 2003, Sobolev Spaces, V140
[2]  
[Anonymous], T MOSCOW MATH SOC
[3]   The Hele-Shaw problem with surface tension in a half-plane: A model problem [J].
Bazaliy, BV ;
Friedman, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 216 (02) :387-438
[4]  
BENMBAREK A, 1975, CR ACAD SCI A MATH, V280, P1591
[5]  
Borsuk M, 2006, NH MATH LIB, V69, P1
[6]   OBLIQUE DERIVATIVE AND INTERFACE PROBLEMS ON POLYGONAL DOMAINS AND NETWORKS [J].
DAUGE, M ;
NICAISE, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (8-9) :1147-1192
[7]  
GRISVARD P, 1985, MONOGR STUD MATH, V21
[8]  
Kellogg R.B., 1972, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equation
[9]   BOUNDARY-VALUE-PROBLEMS FOR PARTIAL-DIFFERENTIAL EQUATIONS IN NON-SMOOTH DOMAINS [J].
KONDRATEV, VA ;
OLEINIK, OA .
RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (02) :1-86
[10]  
Ladyzhenskaia O.A., 1968, LINEAR QUASILINEAR E