Dense and sparse vortices in excitable media drift in opposite directions in electric field

被引:67
作者
Krinsky, V
Hamm, E
Voignier, V
机构
[1] Institut Non Linéaire de Nice, Valbonne, 06560
关键词
D O I
10.1103/PhysRevLett.76.3854
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two mechanisms for vortex drift in an advective field are described. The velocity of vortex tip movement in an advective held is periodically modulated. It results in the periodical modulations of the core size of the vortex. While periodical changes of the core size (mechanism 1) result in vortex drift parallel to the electric field, periodical changes of the velocity (mechanism 2) result in the vortex drift in the opposite direction. Mechanism 1 dominates in sparse vortices, mechanism 2 dominates in dense vortices. Arguments used to predict the effect suggest its generic nature.
引用
收藏
页码:3854 / 3857
页数:4
相关论文
共 21 条
[1]   INFLUENCE OF ELECTRIC-FIELD ON ROTATING SPIRAL WAVES IN THE BELOUSOV-ZHABOTINSKY REACTION [J].
AGLADZE, KI ;
DEKEPPER, P .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (13) :5239-5242
[2]   A MODEL FOR FAST COMPUTER-SIMULATION OF WAVES IN EXCITABLE MEDIA [J].
BARKLEY, D .
PHYSICA D, 1991, 49 (1-2) :61-70
[3]   NONSTEADY BEHAVIOR OF A SPIRAL UNDER A CONSTANT-CURRENT [J].
BELMONTE, A ;
FLESSELLES, JM .
EUROPHYSICS LETTERS, 1995, 32 (03) :267-272
[4]   DEFECT-MEDIATED TURBULENCE [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (14) :1619-1622
[5]   A FORM OF TURBULENCE ASSOCIATED WITH DEFECTS [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICA D, 1989, 37 (1-3) :91-103
[6]   PERIODIC-SOLUTIONS TO REACTION-DIFFUSION EQUATIONS [J].
GREENBERG, JM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (02) :199-205
[7]  
HAMM E, 1995, IN PRESS INLN REPORT
[8]   A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE [J].
HODGKIN, AL ;
HUXLEY, AF .
JOURNAL OF PHYSIOLOGY-LONDON, 1952, 117 (04) :500-544
[9]   SPIRAL CORE IN SINGLY DIFFUSIVE EXCITABLE MEDIA [J].
KESSLER, DA ;
LEVINE, H ;
REYNOLDS, WN .
PHYSICAL REVIEW LETTERS, 1992, 68 (03) :401-404
[10]  
KLEMAN M, 1977, POINTS LIGNES PAROIS, P152