Dynamic modeling of sea-level rise impact on coastal flood hazard and vulnerability in New York City's built environment

被引:10
|
作者
Wang, Yifan [1 ]
Marsooli, Reza [1 ]
机构
[1] Stevens Inst Technol, Dept Civil Environm & Ocean Engn, Hoboken, NJ 07030 USA
关键词
Sea-level rise; Coastal flood hazards; Human vulnerability; Nonlinear interaction; Hurricane sandy; Built environment; CLIMATE-CHANGE; PANEL;
D O I
10.1016/j.coastaleng.2021.103980
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
There is a consensus that future sea-level rise (SLR) will increase the exposure of population and assets to coastal flooding. However, the extent to which SLR affects flood hazards and human vulnerability to flooding in the built environment is not well understood. This study investigates the effects of future SLR on coastal flood hazards and human vulnerability to flooding in New York City's built environment. With a focus on a hurricane-induced flood event, we utilize a building-scale hydrodynamic model to simulate flood hazards under different 21st-century SLR scenarios. We further implement a human vulnerability model to reveal how the physical vulnerability of individuals to flooding would respond to the effects of SLR on flood hazards. We find that SLR would result in a substantial increase in not only the floodwater depth but also the floodwater velocity in the study area. For example, under a 1.04 m SLR scenario, the increase in the max floodwater speed exceeds 2.7 m/s (1271%) in 5% of the area that was flooded under the no-SLR scenario (control run). Model results show that, due to nonlinear interactions, the floodwater depth simulated by the hydrodynamic model for a SLR scenario could substantially differ from the depth estimated based on a linear addition of the SLR to the control-run floodwater depth. We find that the effects of SLR on flood hazards would, in turn, substantially affect the extent, intensity, and duration of human physical vulnerability to flooding, which could potentially increase the number of injuries and mortalities.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A new global coastal database for impact and vulnerability analysis to sea-level rise
    Vafeidis, Athanasios T.
    Nicholls, Robert J.
    McFadden, Loraine
    Tol, Richard S. J.
    Hinkel, Jochen
    Spencer, Tom
    Grashoff, Poul S.
    Boot, Gerben
    Klein, Richard J. T.
    JOURNAL OF COASTAL RESEARCH, 2008, 24 (04) : 917 - 924
  • [2] Enhancing New York City's resilience to sea level rise and increased coastal flooding
    Gornitz, Vivien
    Oppenheimer, Michael
    Kopp, Robert
    Horton, Radley
    Orton, Philip
    Rosenzweig, Cynthia
    Solecki, William
    Patrick, Lesley
    URBAN CLIMATE, 2020, 33
  • [3] Sea-level rise and flooding in coastal riverine flood plains
    Garcia, Elizabeth S.
    Loaiciga, Hugo A.
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2014, 59 (01): : 204 - 220
  • [4] Analysis of flood vulnerability and assessment of the impacts in coastal zones of Bangladesh due to potential sea-level rise
    Bhuiyan, Md. Jabed Abdul Naser
    Dutta, Dushmanta
    NATURAL HAZARDS, 2012, 61 (02) : 729 - 743
  • [5] Coastal vulnerability and the implications of sea-level rise for Ireland
    Devoy, Robert J. N.
    JOURNAL OF COASTAL RESEARCH, 2008, 24 (02) : 325 - +
  • [6] Shifting landscapes of coastal flood risk: environmental (in)justice of urban change, sea level rise, and differential vulnerability in New York City
    Pablo Herreros-Cantis
    Veronica Olivotto
    Zbigniew J. Grabowski
    Timon McPhearson
    Urban Transformations, 2 (1):
  • [7] Distributed process modeling for regional assessment of coastal vulnerability to sea-level rise
    Brett Bryan
    Nick Harvey
    Tony Belperio
    Bob Bourman
    Environmental Modeling & Assessment, 2001, 6 : 57 - 65
  • [8] Distributed process modeling for regional assessment of coastal vulnerability to sea-level rise
    Bryan, B
    Harvey, N
    Belperio, T
    Bourman, B
    ENVIRONMENTAL MODELING & ASSESSMENT, 2001, 6 (01) : 57 - 65
  • [9] Bangladesh's dynamic coastal regions and sea-level rise
    Brammer, Hugh
    CLIMATE RISK MANAGEMENT, 2014, 1 : 51 - 62
  • [10] National assessment of coastal vulnerability to sea-level rise for the Chinese coast
    Jie Yin
    Zhane Yin
    Jun Wang
    Shiyuan Xu
    Journal of Coastal Conservation, 2012, 16 : 123 - 133