A 3D printing approach to intelligent food packaging

被引:47
作者
Tracey, Chantal T. [1 ]
Predeina, Aleksandra L. [1 ]
Krivoshapkina, Elena F. [1 ]
Kumacheva, Eugenia [1 ,2 ,3 ,4 ]
机构
[1] ITMO Univ, SCAMT Inst, 49 Kronverkskiy Prospekt, St Petersburg 197101, Russia
[2] Univ Toronto, Dept Chem, 80 St George St, Toronto, ON M5S 3H6, Canada
[3] Univ Toronto, Inst Biomed Engn, 164 Coll St, Toronto, ON M5S 3G9, Canada
[4] Univ Toronto, Dept Chem Engn & Appl Chem, 200 Coll St, Toronto, ON M5S 3E5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Intelligent food packaging; Point -of -use devices; 3D printing; Sensors; Indicators; Electronic tags; TIME-TEMPERATURE INDICATOR; COLD CHAIN; QUALITY; STEREOLITHOGRAPHY; MANAGEMENT; BIOSENSORS; HYDROGELS; TRENDS;
D O I
10.1016/j.tifs.2022.05.003
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Background: Intelligent packaging and point-of-use devices designed to monitor food quality and package integrity, as well as assist in food authentication, are currently unaffordable to the food industry due to costly conventional fabrication methods, namely inkjet printing, gravure printing, and screen-printing technologies. Another major hindrance is the availability and use of safe food-friendly materials to produce the smart com-ponents (i.e., sensors, indicators, and tags) that monitor these parameters. Recently, however, additive manufacturing (stereolithography and extrusion-based 3D printing) has emerged as a cost-effective solution for the fabrication of these smart systems from materials deemed safe and food-friendly by internationally recog-nised food regulation agencies.Scope and approach: This study emphasises the importance of utilizing intelligent food packaging. Regular food packaging allows potential tampering, contamination, and food fraud to go undetected. Intelligent food pack-aging, however, allows for real-time communication on the state of a food product and would assist in food defense and ensure consumers receive food products of the highest quality. Unfortunately, consumers are currently unwilling to shoulder the costs associated with intelligent food packaging and point-of-use devices fabricated using conventional approaches. This review explores 3D printing as a viable alternative.Key findings and conclusions: A 3D printing approach to the fabrication of intelligent packaging and point-of-use devices allows for the development of highly sensitive, self-indicating, multifunctional smart components using biocompatible nontoxic materials more cheaply than conventional fabrication methods. This would make intelligent food packaging more ubiquitous and, in turn, reduce food waste and prevent consumers from ingesting unfit food products.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [21] Designing future foods: Harnessing 3D food printing technology to encapsulate bioactive compounds
    Ahmadzadeh, Safoura
    Lenie, Matthias Dixily R.
    Mirmahdi, Razieh Sadat
    Ubeyitogullari, Ali
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2025, 65 (02) : 303 - 319
  • [22] Inkjet and 3D printing technology for fundamental millimeter-wave wireless packaging
    Tehrani B.K.
    Bahr R.A.
    Tentzeris M.M.
    Journal of Microelectronics and Electronic Packaging, 2018, 15 (03): : 101 - 106
  • [23] 3D printing with silk: considerations and applications
    DeBari, Megan K.
    Keyser, Mia N.
    Bai, Michelle A.
    Abbott, Rosalyn D.
    CONNECTIVE TISSUE RESEARCH, 2020, 61 (02) : 163 - 173
  • [24] Functional 3D Printing for Microfluidic Chips
    Weisgrab, Gregor
    Ovsionikov, Aleksandr
    Costa, Pedro F.
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10)
  • [25] 3D Printing Approach to Valorization of Agri-Food Processing Waste Streams
    Yoha, Kandasamy Suppiramaniam
    Moses, Jeyan Arthur
    FOODS, 2023, 12 (01)
  • [26] An Overview of 3D Printing Technologies for Food Fabrication
    Jie Sun
    Weibiao Zhou
    Dejian Huang
    Jerry Y. H. Fuh
    Geok Soon Hong
    Food and Bioprocess Technology, 2015, 8 : 1605 - 1615
  • [27] Food Texture Design by 3D Printing: A Review
    Pereira, Tatiana
    Barroso, Sonia
    Gil, Maria M.
    FOODS, 2021, 10 (02)
  • [28] State of the Art of Sustainability in 3D Food Printing
    Otcu, Gulsen Bedia
    Ramundo, Lucia
    Terzi, Sergio
    2019 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING, TECHNOLOGY AND INNOVATION (ICE/ITMC), 2019,
  • [29] A Straightforward Approach for 3D Bacterial Printing
    Lehner, Benjamin A. E.
    Schmieden, Dominik T.
    Meyer, Anne S.
    ACS SYNTHETIC BIOLOGY, 2017, 6 (07): : 1124 - 1130
  • [30] An Overview of 3D Printing Technologies for Food Fabrication
    Sun, Jie
    Zhou, Weibiao
    Huang, Dejian
    Fuh, Jerry Y. H.
    Hong, Geok Soon
    FOOD AND BIOPROCESS TECHNOLOGY, 2015, 8 (08) : 1605 - 1615