Preference information modeling by empty interaction index based on monotone measure

被引:0
作者
Pap, Endre [1 ,2 ]
Wu, Jianzhang [3 ]
Szakal, Aniko [2 ]
机构
[1] Singidunum Univ, Danijelova 32, Belgrade, Serbia
[2] Obuda Univ, H-1034 Budapest, Hungary
[3] Ningbo Univ, Sch Business, Ningbo 315211, Zhejiang, Peoples R China
来源
2015 16TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI) | 2015年
关键词
Multicriteria decision analysis; monotone measure; Choquet integral; Shapley importance and interaction index; Explicit preference information; AXIOMATIC APPROACH; FUZZY MEASURES; CHOQUET; INTEGRALS; CRITERIA; CLASSIFICATION; AGGREGATION; CAPACITIES; ENTROPY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the monotone measure identification issue from the perspective of the Shapley importance and interaction index, and propose Shapely importance and interaction index oriented monotone measure identification methods. We investigate some properties of the probabilistic interaction indices of the empty set, analyze the meaning of the Shapely interaction index of the empty set in the context of multicriteria decision analysis, and propose the maximum and minimum empty set interaction principles based monotone easure identification methods.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 55 条
[21]  
Grabisch M., 2009, AGGREGATIONS FUNCTIO
[22]  
Grabisch M., 1999, Beliefs, Interactions and Preferences in Decision Making, V40
[23]  
Grabisch M., 2000, IEEE T FUZZY SYST, V8, P5
[24]   A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid [J].
Grabisch, Michel ;
Labreuche, Christophe .
4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2008, 6 (01) :1-44
[25]   A review of methods for capacity identification in Choquet integral based multi-attribute utility theory applications of the Kappalab R package [J].
Grabisch, Michel ;
Kojadinovic, Ivan ;
Meyer, Patrick .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 186 (02) :766-785
[26]  
Hullermeier Eyke, 2013, COMPUTATIONAL INTELL, P17, DOI DOI 10.1007/978-3-642-32378-2_2
[27]  
Klement E. P., FUZZY SETS SYSTEMS, DOI [10.1016/j.fss.2015.05.017, DOI 10.1016/J.FSS.2015.05.017]
[28]   An axiomatic approach to the definition of the entropy of a discrete Choquet capacity [J].
Kojadinovic, I ;
Marichal, JL ;
Roubens, M .
INFORMATION SCIENCES, 2005, 172 (1-2) :131-153
[29]   Minimum variance capacity identification [J].
Kojadinovic, Ivan .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 177 (01) :498-514
[30]  
Li J., FUZZY SETS SYSTEMS