Preference information modeling by empty interaction index based on monotone measure

被引:0
作者
Pap, Endre [1 ,2 ]
Wu, Jianzhang [3 ]
Szakal, Aniko [2 ]
机构
[1] Singidunum Univ, Danijelova 32, Belgrade, Serbia
[2] Obuda Univ, H-1034 Budapest, Hungary
[3] Ningbo Univ, Sch Business, Ningbo 315211, Zhejiang, Peoples R China
来源
2015 16TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI) | 2015年
关键词
Multicriteria decision analysis; monotone measure; Choquet integral; Shapley importance and interaction index; Explicit preference information; AXIOMATIC APPROACH; FUZZY MEASURES; CHOQUET; INTEGRALS; CRITERIA; CLASSIFICATION; AGGREGATION; CAPACITIES; ENTROPY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the monotone measure identification issue from the perspective of the Shapley importance and interaction index, and propose Shapely importance and interaction index oriented monotone measure identification methods. We investigate some properties of the probabilistic interaction indices of the empty set, analyze the meaning of the Shapely interaction index of the empty set in the context of multicriteria decision analysis, and propose the maximum and minimum empty set interaction principles based monotone easure identification methods.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 55 条
[1]   Assessing non-additive utility for multicriteria decision aid [J].
Angilella, S ;
Greco, S ;
Lamantia, F ;
Matarazzo, B .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 158 (03) :734-744
[2]   Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral [J].
Angilella, Silvia ;
Greco, Salvatore ;
Matarazzo, Benedetto .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 201 (01) :277-288
[3]  
[Anonymous], 2000, Fuzzy measures and integrals: theory and applications
[4]  
[Anonymous], ANN MATH STUDIES
[5]  
[Anonymous], IEEE T FUZZY SYST
[6]  
Banzhaf JF., 1965, Rutgers Law Rev, V19, P317343
[7]   Learning Choquet-Integral-Based Metrics for Semisupervised Clustering [J].
Beliakov, Gleb ;
James, Simon ;
Li, Gang .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (03) :562-574
[8]   Construction of aggregation functions from data using linear programming [J].
Beliakov, Gleb .
FUZZY SETS AND SYSTEMS, 2009, 160 (01) :65-75
[9]   Adaptive Local Fusion With Fuzzy Integrals [J].
Ben Abdallah, Ahmed Chamseddine ;
Frigui, Hichem ;
Gader, Paul .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (05) :849-864
[10]   Monitoring the improvement of an overall industrial performance based on a Choquet integral aggregation [J].
Berrah, L. ;
Mauris, G. ;
Montmain, J. .
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2008, 36 (03) :340-351