Optimal results for parabolic problems arising in some physical models with critical growth in the gradient respect to a Hardy potential

被引:9
作者
Abdellaoui, Boumediene [2 ]
Peral, Ireneo [1 ]
Primo, Ana [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[2] Univ Abou Bekr Belkaid Tlemcen, Dept Math, Tilimsen 13000, Algeria
关键词
Quasi-linear heat equations; Existence and nonexistence; Hardy potential; Blow-up; Fujita type exponent; RENORMALIZED SOLUTIONS; CAUCHY-PROBLEM; EQUATIONS; EXISTENCE; CONVERGENCE;
D O I
10.1016/j.aim.2010.04.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the following parabolic problem {u(t) - Delta u = vertical bar del u vertical bar(p) + lambda u/vertical bar x vertical bar(2) + f, u > 0 in Omega x (0, T), u(x,t) = 0 on partial derivative Omega x (0, T), u(x,0) = u(0)(x), x is an element of Omega, where Omega subset of R-N, N >= 3, is a bounded regular domain such that 0 is an element of Omega OR Omega = R-N, p > 1, lambda >= 0 and f >= 0, u(0) >= 0 are in a suitable class of functions. There are deep differences with respect to the heat equation (lambda = 0). The main features in the paper are the following. If lambda > 0, there exists a critical exponent p(+)(lambda) such that for p >= p(+)(lambda), there is no nontrivial local solution. p(+)(lambda) is optimal in the sense that, if p < p(+)(lambda) there exists solution for suitable data. If we consider the Cauchy problem, i.e., Omega equivalent to R-N, we find the same phenomenon about the critical power p(+)(lambda) as above. Moreover, there exists a Fujita type exponent F(lambda) < p(+)(lambda) in the sense that independently of the initial datum, for 1 < p < F(lambda), any solution blows up in a finite time respect to an integral norm. This is a major difference with respect to the heat equation (lambda = 0). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2967 / 3021
页数:55
相关论文
共 30 条
[1]   Some improved Caffarelli-Kohn-Nirenberg inequalities [J].
Abdellaoui, B ;
Colorado, E ;
Peral, I .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (03) :327-345
[2]  
Abdellaoui B, 2004, J EUR MATH SOC, V6, P119
[3]   Regularity and nonuniqueness results for parabolic problems arising in some physical models, having natural growth in the gradient [J].
Abdellaoui, Boumediene ;
Dall'Aglio, Andrea ;
Peral, Ireneo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (03) :242-269
[4]  
Abdellaoui B, 2007, ANN SCUOLA NORM-SCI, V6, P159
[5]   WEAK SOLUTIONS OF SOME QUASI-LINEAR ELLIPTIC-EQUATIONS WITH DATA MEASURES [J].
ALAA, NE ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :23-35
[6]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
ARONSON, DG ;
SERRIN, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (02) :81-&
[7]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[8]   SEMILINEAR PARABOLIC PROBLEMS WITH GIVEN MEASURES [J].
BARAS, P ;
PIERRE, M .
APPLICABLE ANALYSIS, 1984, 18 (1-2) :111-149
[9]   The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces [J].
Ben-Artzi, M ;
Souplet, P ;
Weissler, FB .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (04) :343-378
[10]  
Berestycki H., 2001, Interfaces and Free Boundaries, V3, P361, DOI DOI 10.4171/IFB/45