An efficient method for the numerical solution of Hammerstein mixed VF integral equations on 2D irregular domains

被引:1
作者
Dastjerdi, H. Laeli [1 ]
Ahmadabadi, M. Nili [2 ]
机构
[1] Farhangian Univ, Dept Math, Tehran, Iran
[2] Islamic Azad Univ, Dept Math, Najafabad Branch, Najafabad, Iran
关键词
Two dimensional equations; Irregular domain; Mixed Volterra-Fredholm integral equations; Mesh-less method; Numerical treatment; DATA APPROXIMATION SCHEME; COLLOCATION METHOD; MULTIQUADRICS;
D O I
10.1016/j.amc.2018.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we adapt the implicity linear collocation method for solving nonlinear two dimensional mixed Volterra-Fredholm integral equations of Hammerstein type by using IMQ-RBFs on a non-rectangular domain. The proposed method is mesh-free, and it is independent of the geometry of domain. Convergence analysis of the proposed method together with some benchmark examples is provided which support its reliability and numerical stability. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 33 条
[1]   Numerical solution of the nonlinear Fredholm integral equations by positive definite functions [J].
Alipanah, Amjad ;
Dehghan, Mehdi .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) :1754-1761
[2]  
[Anonymous], 2010, Seven lectires on theory and numerical solution of Volterra integral equations
[3]  
[Anonymous], 1984, Geometric Methods of Nonlinear Analysis
[4]  
[Anonymous], J APPL MATH MECH
[5]  
[Anonymous], THERM SCI
[6]   THE DISCRETE COLLOCATION METHOD FOR NONLINEAR INTEGRAL-EQUATIONS [J].
ATKINSON, K ;
FLORES, J .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (02) :195-213
[7]  
Atkinson K., 1997, NUMERICAL SOLUTION I
[8]  
ATKINSON K. E., 1988, J. Integ. Equations Appl., V1, P17
[9]   Two-dimensional Legendre wavelets method for the mixed Volterra-Fredholm integral equations [J].
Banifatemi, E. ;
Razzaghi, M. ;
Yousefi, S. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (11) :1667-1675
[10]   ON THE NUMERICAL-SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS BY COLLOCATION METHODS [J].
BRUNNER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :987-1000