Nonnegative Matrix Factorization with Earth Mover's Distance Metric

被引:0
|
作者
Sandler, Roman [1 ]
Lindenbaum, Michael [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative Matrix Factorization (NMF) approximates a given data matrix as a product of two low rank nonnegative matrices, usually by minimizing the L or the KL distance between the data matrix and the matrix product. This factorization was shown to be useful for several important computer vision applications. We propose here a new NMF algorithm that minimizes the Earth Mover's Distance (EMD) error between the data and the matrix product. We propose an iterative NMF algorithm (EMD NMF) and prove its convergence. The algorithm is based on linear programming. We discuss the numerical difficulties of the EMD NMF and propose an efficient approximation. Naturally, the matrices obtained with EMD NMF are different from those obtained with L NMF We discuss these differences in the context of two challenging computer vision tasks - texture classification and face recognition - and demonstrate the advantages of the proposed method.
引用
收藏
页码:1873 / 1880
页数:8
相关论文
共 50 条
  • [41] Nonnegative Matrix Factorization: When Data is not Nonnegative
    Wu, Siyuan
    Wang, Jim
    2014 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2014), 2014, : 227 - 231
  • [42] Nonnegative rank factorization of a nonnegative matrix A with A† A≥0
    Jain, SK
    Tynan, J
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (01): : 83 - 95
  • [43] EARTH-MOVER'S DISTANCE AS A TRACKING REGULARIZER
    Charles, Adam S.
    Bertrand, Nicholas P.
    Lee, John
    Rozell, Christopher J.
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [44] EARTH MOVER DISTANCE ON SUPERPIXELS
    Boltz, Sylvain
    Nielsen, Frank
    Soatto, Stefano
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 4597 - 4600
  • [45] Quantized Nonnegative Matrix Factorization
    de Frein, Ruairi
    2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2014, : 377 - 382
  • [46] Quadratic nonnegative matrix factorization
    Yang, Zhirong
    Oja, Erkki
    PATTERN RECOGNITION, 2012, 45 (04) : 1500 - 1510
  • [47] Elastic nonnegative matrix factorization
    Xiong, He
    Kong, Deguang
    PATTERN RECOGNITION, 2019, 90 : 464 - 475
  • [48] Elastic Nonnegative Matrix Factorization
    Ballen, Peter
    Guha, Sudipto
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1271 - 1278
  • [49] ON THE COMPLEXITY OF NONNEGATIVE MATRIX FACTORIZATION
    Vavasis, Stephen A.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1364 - 1377
  • [50] WEIGHTED NONNEGATIVE MATRIX FACTORIZATION
    Kim, Yang-Deok
    Choi, Seungjin
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1541 - 1544