Thickness-controllable electrospun fibers promote tubular structure formation by endothelial progenitor cells

被引:25
作者
Hong, Jong Kyu [1 ,2 ]
Bang, Ju Yup [3 ]
Xu, Guan [4 ]
Lee, Jun-Hee [1 ]
Kim, Yeon-Ju [1 ]
Lee, Ho-Jun [5 ]
Kim, Han Seong [3 ]
Kwon, Sang-Mo [1 ,2 ,6 ]
机构
[1] Pusan Natl Univ, Med Res Inst, Sch Med, Lab Vasc Med & Stem Cell Biol,Dept Physiol, Yangsan 626870, South Korea
[2] Pusan Natl Univ, Med Res Inst, Sch Med, Conversence Stem Cell Res Ctr, Yangsan 626870, South Korea
[3] Pusan Natl Univ, Dept Organ Mat Sci, Pusan, South Korea
[4] Univ Michigan, Sch Med, Dept Radiol, Ann Arbor, MI USA
[5] Pusan Natl Univ, Dept Elect Engn, Pusan, South Korea
[6] Pusan Natl Univ, Dept Physiol, Sch Med, Immunoregulatory Therapeut Grp Brain Busan Projec, Yangsan 626870, South Korea
来源
INTERNATIONAL JOURNAL OF NANOMEDICINE | 2015年 / 10卷
基金
新加坡国家研究基金会;
关键词
electrospinning; nanofibrous scaffold; tunable thickness; vascularization; stem cell; TISSUE REGENERATION; LAYERED SCAFFOLDS; STEM-CELLS; DIFFERENTIATION; VASCULARIZATION; MEMBRANE; ENHANCE; PROTEIN;
D O I
10.2147/IJN.S73096
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Controlling the thickness of an electrospun nanofibrous scaffold by altering its pore size has been shown to regulate cell behaviors such as cell infiltration into a three-dimensional (3D) scaffold. This is of great importance when manufacturing tissue-engineering scaffolds using an electrospinning process. In this study, we report the development of a novel process whereby additional aluminum foil layers were applied to the accumulated electrospun fibers of an existing aluminum foil collector, effectively reducing the incidence of charge buildup. Using this process, we fabricated an electrospun scaffold with a large pore (pore size >40 mu m) while simultaneously controlling the thickness. We demonstrate that the large pore size triggered rapid infiltration (160 mu m in 4 hours of cell culture) of individual endothelial progenitor cells (EPCs) and rapid cell colonization after seeding EPC spheroids. We confirmed that the 3D, but not two-dimensional, scaffold structures regulated tubular structure formation by the EPCs. Thus, incorporation of stem cells into a highly porous 3D scaffold with tunable thickness has implications for the regeneration of vascularized thick tissues and cardiac patch development.
引用
收藏
页码:1189 / 1200
页数:12
相关论文
共 34 条
[1]   RETRACTED: Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds (Retracted article. See vol. 199, pg. 89, 2019) [J].
Ajalloueian, Fatemeh ;
Lim, Mei Ling ;
Lemon, Greg ;
Haag, Johannes C. ;
Gustafsson, Ylva ;
Sjoqvist, Sebastian ;
Beltran-Rodriguez, Antonio ;
Del Gaudio, Costantino ;
Baiguera, Silvia ;
Bianco, Alessandra ;
Jungebluth, Philipp ;
Macchiarini, Paolo .
BIOMATERIALS, 2014, 35 (20) :5307-5315
[2]   Endothelial cell scaffolds generated by 3D direct writing of biodegradable polymer microfibers [J].
Berry, Scott M. ;
Warren, Sean P. ;
Hilgart, DeVonnah A. ;
Schworer, Adam T. ;
Pabba, Santosh ;
Gobin, Andrea S. ;
Cohn, Robert W. ;
Keynton, Robert S. .
BIOMATERIALS, 2011, 32 (07) :1872-1879
[3]   Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold [J].
Binan, Loic ;
Tendey, Charlene ;
De Crescenzo, Gregory ;
El Ayoubi, Rouwayda ;
Ajji, Abdellah ;
Jolicoeur, Mario .
BIOMATERIALS, 2014, 35 (02) :664-674
[4]   Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold [J].
Blakeney, Bryan A. ;
Tambralli, Ajay ;
Anderson, Joel M. ;
Andukuri, Adinarayana ;
Lim, Dong-Jin ;
Dean, Derrick R. ;
Jun, Ho-Wook .
BIOMATERIALS, 2011, 32 (06) :1583-1590
[5]   Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures [J].
Chen, Xuening ;
Ergun, Asli ;
Gevgilili, Halil ;
Ozkan, Seher ;
Kalyon, Dilhan M. ;
Wang, Hongjun .
BIOMATERIALS, 2013, 34 (33) :8203-8212
[6]   The role of endothelial cells in myofiber differentiation and the vascularization and innervation of bioengineered muscle tissue in vivo [J].
Criswell, Tracy L. ;
Corona, Benjamin T. ;
Wang, Zhan ;
Zhou, Yu ;
Niu, Guoguang ;
Xu, Yong ;
Christ, George J. ;
Soker, Shay .
BIOMATERIALS, 2013, 34 (01) :140-149
[7]   Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-L-lactide) as an elastomeric scaffold for vascular engineering [J].
Dargaville, Bronwin L. ;
Vaquette, Cedryck ;
Rasoul, Firas ;
Cooper-White, Justin J. ;
Campbell, Julie H. ;
Whittaker, Andrew K. .
ACTA BIOMATERIALIA, 2013, 9 (06) :6885-6897
[8]   Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds [J].
Domingos, M. ;
Intranuovo, F. ;
Gloria, A. ;
Gristina, R. ;
Ambrosio, L. ;
Bartolo, P. J. ;
Favia, P. .
ACTA BIOMATERIALIA, 2013, 9 (04) :5997-6005
[9]   Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering [J].
Gloria, A. ;
Russo, T. ;
D'Amora, U. ;
Zeppetelli, S. ;
D'Alessandro, T. ;
Sandri, M. ;
Banobre-Lopez, M. ;
Pineiro-Redondo, Y. ;
Uhlarz, M. ;
Tampieri, A. ;
Rivas, J. ;
Herrmannsdoerfer, T. ;
Dediu, V. A. ;
Ambrosio, L. ;
De Santis, R. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2013, 10 (80)
[10]   Three-Dimensional Poly(ε-caprolactone) Bioactive Scaffolds with Controlled Structural and Surface Properties [J].
Gloria, A. ;
Causa, F. ;
Russo, T. ;
Battista, E. ;
Della Moglie, R. ;
Zeppetelli, S. ;
De Santis, R. ;
Netti, P. A. ;
Ambrosio, L. .
BIOMACROMOLECULES, 2012, 13 (11) :3510-3521