In operando observation of temperature dependent phase evolution in lithium-incorporation olivine cathode

被引:29
作者
Yan, Mengyu [1 ]
Zhang, Guobin [1 ]
Wei, Qiulong [1 ]
Tian, Xiaocong [1 ]
Zhao, Kangning [1 ]
An, Qinyou [1 ]
Zhou, Liang [1 ]
Zhao, Yuntong [1 ,2 ]
Niu, Chaojiang [1 ]
Ren, Wenhao [1 ]
He, Liang [1 ]
Mai, Liqiang [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
基金
中国国家自然科学基金;
关键词
In-situ X-ray diffraction; LiFePO4; Intermediate phases; Low temperature; ION BATTERY; LIFEPO4; NANOCOMPOSITE; CHALLENGES; ELECTRODES; FEPO4; SIZE;
D O I
10.1016/j.nanoen.2016.01.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiFePO4 is one of the most outstanding cathodes for the high performance lithium-ion battery, while it is restricted by its unsatisfactory low temperature performance. Here we detect the structural dynamics and reaction routes of LiFePO4 via operando condition with high rates, well reproducibility over cycles and low temperature in common laboratory X-ray without the synchrotron light source. The intermediate phases between LiFePO4 and FePO4, driven by the overpotential and limited ion transfer rate along the b direction at low temperature, are captured. Our results demonstrate that the existence of intermediate can greatly improve the diffusion kinetics of LiFePO4. The deep understanding of reaction routes of LiFePO4 at low temperature will guide the further material optimization design. Besides LiFePO4, such high time resolution in-situ X-ray diffraction testing method with laboratory source is available to understand the reaction mechanisms of other electrochemical reaction system. (C) 2016 Published by Elsevier Ltd.
引用
收藏
页码:406 / 413
页数:8
相关论文
共 35 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[3]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[4]   Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries [J].
Doherty, Cara M. ;
Caruso, Rachel A. ;
Smarsly, Bernd M. ;
Adelhelm, Philipp ;
Drummond, Calum J. .
CHEMISTRY OF MATERIALS, 2009, 21 (21) :5300-5306
[5]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[6]  
He B.B., 2011, Two-dimensional X-ray diffraction
[7]   Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity [J].
Hu, Lung-Hao ;
Wu, Feng-Yu ;
Lin, Cheng-Te ;
Khlobystov, Andrei N. ;
Li, Lain-Jong .
NATURE COMMUNICATIONS, 2013, 4
[8]   Battery materials for ultrafast charging and discharging [J].
Kang, Byoungwoo ;
Ceder, Gerbrand .
NATURE, 2009, 458 (7235) :190-193
[9]  
Kao Y., 2011, CHEM MATER, V22, P21
[10]   Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy [J].
Laffont, L. ;
Delacourt, C. ;
Gibot, P. ;
Wu, M. Yue ;
Kooyman, P. ;
Masquelier, C. ;
Tarascon, J. Marie .
CHEMISTRY OF MATERIALS, 2006, 18 (23) :5520-5529