Continuity of the percolation threshold in randomly grown graphs

被引:4
作者
Turova, Tatyana S. [1 ]
机构
[1] Lund Univ, Ctr Math, S-22100 Lund, Sweden
关键词
Central limit theorem; Gaussian field; Germ-grain model; Point process; Random measure; Random set; Stabilization;
D O I
10.1214/EJP.v12-436
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider various models of randomly grown graphs. In these models the vertices and the edges accumulate within time according to certain rules. We study a phase transition in these models along a parameter which refers to the mean life-time of an edge. Although deleting old edges in the uniformly grown graph changes abruptly the properties of the model, we show that some of the macro-characteristics of the graph vary continuously. In particular, our results yield a lower bound for the size of the largest connected component of the uniformly grown graph.
引用
收藏
页码:1036 / 1047
页数:12
相关论文
共 13 条
[1]  
[Anonymous], 1999, Cambridge Studies in Advanced Mathematics
[2]  
Athreya KB, 1972, BRANCHING PROCESSES, V196
[3]   The phase transition in the uniformly grown random graph has infinite order [J].
Bollobás, B ;
Janson, S ;
Riordan, O .
RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (1-2) :1-36
[4]  
BOLLOBAS B, IN PRESS RANDOM STRU
[5]   Are randomly grown graphs really random? art. no. 041902 [J].
Callaway, DS ;
Hopcroft, JE ;
Kleinberg, JM ;
Newman, MEJ ;
Strogatz, SH .
PHYSICAL REVIEW E, 2001, 64 (04) :7
[6]  
Durrett R., 2003, DISCRETE MATH THEOR, P95
[7]  
HAMMERSLEY JM, 1962, P CAMB PHILOS SOC, V58, P235
[8]   Random graphs with hidden color -: art. no. 015102 [J].
Söderberg, B .
PHYSICAL REVIEW E, 2003, 68 (01) :4
[9]   General formalism for inhomogeneous random graphs -: art. no. 066121 [J].
Söderberg, B .
PHYSICAL REVIEW E, 2002, 66 (06) :6
[10]   Properties of random graphs with hidden color -: art. no. 026107 [J].
Söderberg, B .
PHYSICAL REVIEW E, 2003, 68 (02) :12