High thermoelectric figure of merit of porous Si nanowires from 300 to 700K

被引:52
作者
Yang, Lin [1 ]
Huh, Daihong [2 ,3 ]
Ning, Rui [2 ]
Rapp, Vi [1 ]
Zeng, Yuqiang [1 ]
Liu, Yunzhi [2 ]
Ju, Sucheol [3 ]
Tao, Yi [4 ]
Jiang, Yue [5 ]
Beak, Jihyun [5 ]
Leem, Juyoung [5 ]
Kaur, Sumanjeet [1 ]
Lee, Heon [3 ]
Zheng, Xiaolin [5 ]
Prasher, Ravi S. [1 ,6 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Korea Univ, Dept Mat Sci & Engn, Seoul, South Korea
[4] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[5] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[6] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SILICON NANOWIRES; NANOCRYSTALLINE SILICON; THERMAL-CONDUCTIVITY; BULK; PERFORMANCE; TEMPERATURE; COST;
D O I
10.1038/s41467-021-24208-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermoelectrics operating at high temperature can cost-effectively convert waste heat and compete with other zero-carbon technologies. Among different high-temperature thermoelectrics materials, silicon nanowires possess the combined attributes of cost effectiveness and mature manufacturing infrastructures. Despite significant breakthroughs in silicon nanowires based thermoelectrics for waste heat conversion, the figure of merit (ZT) or operating temperature has remained low. Here, we report the synthesis of large-area, wafer-scale arrays of porous silicon nanowires with ultra-thin Si crystallite size of similar to 4nm. Concurrent measurements of thermal conductivity (kappa), electrical conductivity (sigma), and Seebeck coefficient (S) on the same nanowire show a ZT of 0.71 at 700K, which is more than similar to 18 times higher than bulk Si. This ZT value is more than two times higher than any nanostructured Si-based thermoelectrics reported in the literature at 700K. Experimental data and theoretical modeling demonstrate that this work has the potential to achieve a ZT of similar to 1 at 1000K. Performance of Si nanowires as thermoelectrics are evaluated only from cryogenic to ambient temperatures and ZT has remained low. Here, the authors systematically optimized the synthesis method and improved the suspended microdevice platform to achieve high-performance thermoelectrics up to 700K.
引用
收藏
页数:7
相关论文
共 48 条
[41]   Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide [J].
Yang, Lin ;
Zhang, Qian ;
Cui, Zhiguang ;
Gerboth, Matthew ;
Zhao, Yang ;
Xu, Terry T. ;
Walker, D. Greg ;
Li, Deyu .
NANO LETTERS, 2017, 17 (12) :7218-7225
[42]   Thermal conductivity of individual silicon nanoribbons [J].
Yang, Lin ;
Yang, Yang ;
Zhang, Qian ;
Zhang, Yin ;
Jiang, Youfei ;
Guan, Zhe ;
Gerboth, Matthew ;
Yang, Juekuan ;
Chen, Yunfei ;
Walker, D. Greg ;
Xu, Terry T. ;
Li, Deyu .
NANOSCALE, 2016, 8 (41) :17895-17901
[43]   Thermal conductivity modeling of periodic two-dimensional nanocomposites [J].
Yang, RG ;
Chen, G .
PHYSICAL REVIEW B, 2004, 69 (19) :195316-1
[44]   $ per W metrics for thermoelectric power generation: beyond ZT [J].
Yee, Shannon K. ;
LeBlanc, Saniya ;
Goodson, Kenneth E. ;
Dames, Chris .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) :2561-2571
[45]  
Zhang Q, 2017, THESIS VANDERBILT U
[46]   Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals [J].
Zhao, Li-Dong ;
Lo, Shih-Han ;
Zhang, Yongsheng ;
Sun, Hui ;
Tan, Gangjian ;
Uher, Ctirad ;
Wolverton, C. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2014, 508 (7496) :373-+
[47]   Ultralow Thermal Conductivity of Single-Crystalline Porous Silicon Nanowires [J].
Zhao, Yunshan ;
Yang, Lina ;
Kong, Lingyu ;
Nai, Mui Hoon ;
Liu, Dan ;
Wu, Jing ;
Liu, Yi ;
Chiam, Sing Yang ;
Chim, Wai Kin ;
Lim, Chwee Teck ;
Li, Baowen ;
Thong, John T. L. ;
Hippalgaonkar, Kedar .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (40)
[48]   The Role of Electron-Phonon Interaction in Heavily Doped Fine-Grained Bulk Silicons as Thermoelectric Materials [J].
Zhu, Tiejun ;
Yu, Guanting ;
Xu, Jing ;
Wu, Haijun ;
Fu, Chenguang ;
Liu, Xiaohua ;
He, Jiaqing ;
Zhao, Xinbing .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (08)