Generalized analytic signal associated with linear canonical transform

被引:32
作者
Fu, Yingxiong
Li, Luoqing [1 ]
机构
[1] Hubei Univ, Key Lab Appl Math Hubei Province, Wuhan 430062, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
parameter; (a; b)-Hilbert transform; Bedrosian theorem; generalized analytic signals; linear canonical transform;
D O I
10.1016/j.optcom.2007.11.037
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analytic signal is tightly associated with Hilbert transform and Fourier transform. The linear canonical transform is the generalization of many famous linear integral transforms, such as Fourier transform, fractional Fourier transform and Fresnel transform. Based on the parameter (a, b)-Hilbert transform and the linear canonical transform, in this paper, we develop some issues on generalized analytic signal. The generalized analytic signal can suppress the negative frequency components in the linear canonical transform domain. Furthermore, we prove that the kernel function of the inverse linear canonical transform satisfies the generalized analytic condition and get the generalized analytic pairs. We show the generalized Bedrosian theorem is valid in the linear canonical transform domain. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:1468 / 1472
页数:5
相关论文
共 29 条
[1]   OPTICAL OPERATIONS ON WAVE-FUNCTIONS AS THE ABELIAN SUBGROUPS OF THE SPECIAL AFFINE FOURIER TRANSFORMATION [J].
ABE, S ;
SHERIDAN, JT .
OPTICS LETTERS, 1994, 19 (22) :1801-1803
[2]   Powers of transfer matrices determined by means of eigenfunctions [J].
Alieva, T ;
Bastiaans, MJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (10) :2413-2418
[3]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[4]   Optimal filtering with linear canonical transformations [J].
Barshan, B ;
Kutay, MA ;
Ozaktas, HM .
OPTICS COMMUNICATIONS, 1997, 135 (1-3) :32-36
[5]   PRODUCT THEOREM FOR HILBERT TRANSFORMS [J].
BEDROSIAN, E .
PROCEEDINGS OF THE IEEE, 1963, 51 (05) :868-&
[6]  
Cohen L., 1995, TIME FREQUENCY ANAL
[7]   Analysis of the fractional Hilbert transform [J].
Davis, JA ;
McNamara, DE ;
Cottrell, DM .
APPLIED OPTICS, 1998, 37 (29) :6911-6913
[8]   Convolution theorems for the linear canonical transform and their applications [J].
Deng Bing ;
Tao Ran ;
Wang Yue .
SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2006, 49 (05) :592-603
[9]   Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration [J].
Erden, MF ;
Kutay, MA ;
Ozaktas, HM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) :1458-1462
[10]  
FU YX, 2006, IEEE P COMPUT INTELL, V2, P1785