Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2?

被引:126
|
作者
Aranjuelo, Iker [1 ,2 ]
Cabrera-Bosquet, Llorenc [2 ]
Morcuende, Rosa [4 ]
Christophe Avice, Jean [3 ]
Nogues, Salvador [2 ]
Luis Araus, Jose [2 ,5 ]
Martinez-Carrasco, Rafael [4 ]
Perez, Pilar [4 ]
机构
[1] Univ Publ Navarra CSIC Gobierno Navarra, Inst Agrobiotecnol, E-31192 Mutilva Baja, Spain
[2] Univ Barcelona, Fac Biol, E-08028 Barcelona, Spain
[3] Univ Caen Basse Normandie, UMR INRA UCBN Ecophysiol Vegetale Agron & Nutr NC, IFR ICORE 146, INRA,Inst Biol Fondamentale & Appl, F-14032 Caen, France
[4] CSIC, Inst Nat Resources & Agrobiol Salamanca, E-37071 Salamanca, Spain
[5] Int Maize & Wheat Improvement Ctr CIMMYT, El Batan 56130, Texcoco, Mexico
关键词
C management; elevated CO2; photosynthetic acclimation; proteomic characterization; Rubisco; stable isotopes; FLAG LEAF SENESCENCE; ATMOSPHERIC CO2; MESOPHYLL CONDUCTANCE; CARBON ASSIMILATION; STARCH SYNTHESIS; RESPIRATORY CO2; DOWN-REGULATION; RISING CO2; TEMPERATURE; NITROGEN;
D O I
10.1093/jxb/err095
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO2] conditions (700 versus 370 mu mol mol(-1)) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO2. The ambient C-13/C-12 isotopic composition (delta C-13) of air CO2 was changed from -10.2 parts per thousand in ambient [CO2] to -23.6 parts per thousand under elevated [CO2] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO2] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO2] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO2 enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the delta C-13 of ear total organic matter and respired CO2, soluble sugar delta C-13 revealed that a small amount of labelled C reached the ear. The (CO2)-C-12 labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.
引用
收藏
页码:3957 / 3969
页数:13
相关论文
共 50 条
  • [21] Biofertilization with photosynthetic bacteria as a new strategy for mitigating photosynthetic acclimation to elevated CO2 on cherry tomato
    Du, Bin
    Shukla, M. K.
    Ding, Risheng
    Yang, Xiaolin
    Du, Taisheng
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2022, 194
  • [22] Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2
    Moore, BD
    Cheng, SH
    Rice, J
    Seemann, JR
    PLANT CELL AND ENVIRONMENT, 1998, 21 (09) : 905 - 915
  • [23] Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2
    Aranjuelo, Iker
    Sanz-Saez, Alvaro
    Jauregui, Ivan
    Irigoyen, Juan J.
    Araus, Jose L.
    Sanchez-Diaz, Manuel
    Erice, Gorka
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (07) : 1879 - 1892
  • [24] Warm air temperatures increase photosynthetic acclimation to elevated CO2 concentrations in rice under field conditions
    Yuan, Manman
    Cai, Chuang
    Wang, Xiaozhong
    Li, Gang
    Wu, Gang
    Wang, Jiabao
    Geng, Wei
    Liu, Gang
    Zhu, Jianguo
    Sun, Yixiang
    FIELD CROPS RESEARCH, 2021, 262
  • [25] Photosynthetic acclimation to elevated CO2 in Phaseolus vulgaris L. is altered by growth response to nitrogen supply
    Jifon, JL
    Wolfe, DW
    GLOBAL CHANGE BIOLOGY, 2002, 8 (10) : 1018 - 1027
  • [26] Responses of photosynthetic characteristics and growth in rice and winter wheat to different elevated CO2 concentrations
    Liu, C.
    Hu, Z. H.
    Yu, L. F.
    Chen, S. T.
    Liu, X. M.
    PHOTOSYNTHETICA, 2020, 58 (05) : 1130 - 1140
  • [27] Photosynthetic acclimation to CO2 enrichment related to ribulose-1,5-bisphosphate carboxylation limitation in wheat
    Zhang, D. -Y.
    Chen, G. -Y.
    Chen, J.
    Yong, Z. -H.
    Zhu, J. -G.
    Xu, D. -Q.
    PHOTOSYNTHETICA, 2009, 47 (01) : 152 - 154
  • [28] Leaf carbon management in slow-growing plants exposed to elevated CO2
    Aranjuelo, Iker
    Pardo, Antoni
    Biel, Carmen
    Save, Robert
    Azcon-Bieto, Joaquim
    Nogues, Salvador
    GLOBAL CHANGE BIOLOGY, 2009, 15 (01) : 97 - 109
  • [29] Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated CO2 and elevated temperature
    Luomala, EM
    Laitinen, K
    Kellomäki, S
    Vapaavuori, E
    PLANT CELL AND ENVIRONMENT, 2003, 26 (05) : 645 - 660
  • [30] Considering sink strength to model crop production under elevated atmospheric CO2
    Vanuytrecht, Eline
    Raes, Dirk
    Willems, Patrick
    AGRICULTURAL AND FOREST METEOROLOGY, 2011, 151 (12) : 1753 - 1762