Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2?

被引:126
|
作者
Aranjuelo, Iker [1 ,2 ]
Cabrera-Bosquet, Llorenc [2 ]
Morcuende, Rosa [4 ]
Christophe Avice, Jean [3 ]
Nogues, Salvador [2 ]
Luis Araus, Jose [2 ,5 ]
Martinez-Carrasco, Rafael [4 ]
Perez, Pilar [4 ]
机构
[1] Univ Publ Navarra CSIC Gobierno Navarra, Inst Agrobiotecnol, E-31192 Mutilva Baja, Spain
[2] Univ Barcelona, Fac Biol, E-08028 Barcelona, Spain
[3] Univ Caen Basse Normandie, UMR INRA UCBN Ecophysiol Vegetale Agron & Nutr NC, IFR ICORE 146, INRA,Inst Biol Fondamentale & Appl, F-14032 Caen, France
[4] CSIC, Inst Nat Resources & Agrobiol Salamanca, E-37071 Salamanca, Spain
[5] Int Maize & Wheat Improvement Ctr CIMMYT, El Batan 56130, Texcoco, Mexico
关键词
C management; elevated CO2; photosynthetic acclimation; proteomic characterization; Rubisco; stable isotopes; FLAG LEAF SENESCENCE; ATMOSPHERIC CO2; MESOPHYLL CONDUCTANCE; CARBON ASSIMILATION; STARCH SYNTHESIS; RESPIRATORY CO2; DOWN-REGULATION; RISING CO2; TEMPERATURE; NITROGEN;
D O I
10.1093/jxb/err095
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO2] conditions (700 versus 370 mu mol mol(-1)) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO2. The ambient C-13/C-12 isotopic composition (delta C-13) of air CO2 was changed from -10.2 parts per thousand in ambient [CO2] to -23.6 parts per thousand under elevated [CO2] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO2] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO2] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO2 enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the delta C-13 of ear total organic matter and respired CO2, soluble sugar delta C-13 revealed that a small amount of labelled C reached the ear. The (CO2)-C-12 labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.
引用
收藏
页码:3957 / 3969
页数:13
相关论文
共 50 条
  • [1] Photosynthetic acclimation to elevated CO2 in wheat cultivars
    Sharma-Natu, P
    Khan, FA
    Ghildiyal, MC
    PHOTOSYNTHETICA, 1997, 34 (04) : 537 - 543
  • [2] EFFECTS OF SOURCE-SINK RELATIONS ON PHOTOSYNTHETIC ACCLIMATION TO ELEVATED CO2
    ARP, WJ
    PLANT CELL AND ENVIRONMENT, 1991, 14 (08): : 869 - 875
  • [3] Involvement of nitrogen and cytokinins in photosynthetic acclimation to elevated CO2 of spring wheat
    Gutierrez, Diego
    Morcuende, Rosa
    Del Pozo, Alejandro
    Martinez-Carrasco, Rafael
    Perez, Pilar
    JOURNAL OF PLANT PHYSIOLOGY, 2013, 170 (15) : 1337 - 1343
  • [4] Elevated root-zone temperature promotes the growth and alleviates the photosynthetic acclimation of cucumber plants exposed to elevated [CO2]
    Li, Di
    Dong, Jinlong
    Gruda, Nazim S.
    Li, Xun
    Duan, Zengqiang
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2022, 194
  • [5] Photosynthetic acclimation to elevated CO2 in relation to leaf saccharide constituents in wheat and sunflower
    Ghildiyal, MC
    Rafique, S
    Sharma-Natu, P
    PHOTOSYNTHETICA, 2001, 39 (03) : 447 - 452
  • [6] A mechanistic evaluation of photosynthetic acclimation at elevated CO2
    Rogers, A
    Humphries, SW
    GLOBAL CHANGE BIOLOGY, 2000, 6 (08) : 1005 - 1011
  • [7] Photosynthetic acclimation to elevated CO2 in a sunflower canopy
    Sims, DA
    Cheng, WX
    Luo, YQ
    Seemann, JR
    JOURNAL OF EXPERIMENTAL BOTANY, 1999, 50 (334) : 645 - 653
  • [8] Acclimation mechanisms to elevated CO2 in plants
    Walter, Lidiane Cristine
    Rosa, Hamilton Telles
    Streck, Nereu Augusto
    CIENCIA RURAL, 2015, 45 (09): : 1564 - 1571
  • [9] Photosynthetic characteristics in wheat exposed to elevated O-3 and CO2
    Rudorff, BFT
    Mulchi, CL
    Lee, E
    Rowland, R
    Pausch, R
    CROP SCIENCE, 1996, 36 (05) : 1247 - 1251
  • [10] Scaling the response of wheat to elevated CO2:: Comparison of photosynthetic acclimation and organ/plant growth
    Grüters, U
    Fangmeier, N
    Jäger, HJ
    JOURNAL OF APPLIED BOTANY-ANGEWANDTE BOTANIK, 2000, 74 (1-2): : 74 - 82