Photo-thermionic effect in vertical graphene heterostructures

被引:208
作者
Massicotte, M. [1 ]
Schmidt, P. [1 ]
Vialla, F. [1 ]
Watanabe, K. [2 ]
Taniguchi, T. [2 ]
Tielrooij, K. J. [1 ]
Koppens, F. H. L. [1 ,3 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] ICREA, Barcelona 08010, Spain
基金
欧洲研究理事会;
关键词
SOLAR-ENERGY CONVERSION; 2-PHOTON ABSORPTION; HOT; GENERATION; PHOTODETECTORS; RESPONSIVITY; EMISSION; DETECTOR; SYSTEMS; METALS;
D O I
10.1038/ncomms12174
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding alternative optoelectronic mechanisms that overcome the limitations of conventional semiconductor devices is paramount for detecting and harvesting low-energy photons. A highly promising approach is to drive a current from the thermal energy added to the free-electron bath as a result of light absorption. Successful implementation of this strategy requires a broadband absorber where carriers interact among themselves more strongly than with phonons, as well as energy-selective contacts to extract the excess electronic heat. Here we show that graphene-WSe2-graphene heterostructure devices offer this possibility through the photo-thermionic effect: the absorbed photon energy in graphene is efficiently transferred to the electron bath leading to a thermalized hot carrier distribution. Carriers with energy higher than the Schottky barrier between graphene and WSe2 can be emitted over the barrier, thus creating photocurrent. We experimentally demonstrate that the photo-thermionic effect enables detection of sub-bandgap photons, while being size-scalable, electrically tunable, broadband and ultrafast.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Ultrafast nonequilibrium carrier dynamics in a single graphene layer [J].
Breusing, M. ;
Kuehn, S. ;
Winzer, T. ;
Malic, E. ;
Milde, F. ;
Severin, N. ;
Rabe, J. P. ;
Ropers, C. ;
Knorr, A. ;
Elsaesser, T. .
PHYSICAL REVIEW B, 2011, 83 (15)
[2]   Ultrafast collinear scattering and carrier multiplication in graphene [J].
Brida, D. ;
Tomadin, A. ;
Manzoni, C. ;
Kim, Y. J. ;
Lombardo, A. ;
Milana, S. ;
Nair, R. R. ;
Novoselov, K. S. ;
Ferrari, A. C. ;
Cerullo, G. ;
Polini, M. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[4]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[5]   Two-Photon Absorption in Graphene Enhanced by the Excitonic Fano Resonance [J].
Chen, Weiqiang ;
Wang, Yu ;
Ji, Wei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (29) :16954-16961
[6]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/NPHOTON.2013.238, 10.1038/nphoton.2013.238]
[7]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[8]   The analysis of photoelectric sensitivity curves for clean metals at various temperatures [J].
Fowler, RH .
PHYSICAL REVIEW, 1931, 38 (01) :45-56
[9]   Increased Responsivity of Suspended Graphene Photodetectors [J].
Freitag, Marcus ;
Low, Tony ;
Avouris, Phaedon .
NANO LETTERS, 2013, 13 (04) :1644-1648
[10]   Hot Carrier-Assisted Intrinsic Photoresponse in Graphene [J].
Gabor, Nathaniel M. ;
Song, Justin C. W. ;
Ma, Qiong ;
Nair, Nityan L. ;
Taychatanapat, Thiti ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Levitov, Leonid S. ;
Jarillo-Herrero, Pablo .
SCIENCE, 2011, 334 (6056) :648-652