Refinable and monotone maps revisited

被引:1
作者
Cichon, Daniel [1 ]
Krupski, Pawel [1 ]
Omijanowski, Krzysztof [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
graph; monotone map; refinable map; totally regular curve;
D O I
10.1016/j.topol.2007.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalizing results by J. Ford, J. W. Rogers, Jr. and H. Kato we prove that (1) a map f from a G-like continuum onto a graph G is refinable iff f is monotone; (2) a graph G is an arc or a simple closed curve iff every G-like continuum that contains no nonboundary indecomposable subcontinuum admits a monotone map onto G. We prove that if bonding maps in the inverse sequence of compact spaces are refinable then the projections of the inverse limit onto factor spaces are refinable. We use this fact to show that refinable maps do not preserve completely regular or totally regular continua. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:207 / 212
页数:6
相关论文
共 50 条
[31]   On monotone pointwise contractions in Banach spaces with a graph [J].
Monther Rashed Alfuraidan .
Fixed Point Theory and Applications, 2015
[32]   KKL, Kruskal-Katona, and monotone nets [J].
O'Donnell, Ryan ;
Wimmer, Karl .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :725-734
[33]   Representing a monotone map by principal lattice congruences [J].
G. Czédli .
Acta Mathematica Hungarica, 2015, 147 :12-18
[34]   Best monotone degree conditions for binding number [J].
Bauer, D. ;
Yatauro, M. ;
Kahl, N. ;
Schmeichel, E. .
DISCRETE MATHEMATICS, 2011, 311 (18-19) :2037-2043
[35]   KKL, KRUSKAL-KATONA, AND MONOTONE NETS [J].
O'Donnell, Ryan ;
Wimmer, Karl .
SIAM JOURNAL ON COMPUTING, 2013, 42 (06) :2375-2399
[36]   On monotone pointwise contractions in Banach spaces with a graph [J].
Alfuraidan, Monther Rashed .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[37]   Representing a monotone map by principal lattice congruences [J].
Czedli, G. .
ACTA MATHEMATICA HUNGARICA, 2015, 147 (01) :12-18
[38]   On limit cycles of monotone functions with symmetric connection graph [J].
Aracena, J ;
Demongeot, J ;
Goles, E .
THEORETICAL COMPUTER SCIENCE, 2004, 322 (02) :237-244
[39]   MORE ON INDUCED MAPS ON n-FOLD SYMMETRIC PRODUCT SUSPENSIONS [J].
Barragan, Franco ;
Macias, Sergio ;
Tenorio, Jesus F. .
GLASNIK MATEMATICKI, 2015, 50 (02) :489-512
[40]   When a vector quasimonotone mapping is a vector monotone mapping [J].
A. P. Farajzadeh ;
S. Plubtieng .
Optimization Letters, 2014, 8 :2127-2134