Refinable and monotone maps revisited

被引:1
作者
Cichon, Daniel [1 ]
Krupski, Pawel [1 ]
Omijanowski, Krzysztof [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
graph; monotone map; refinable map; totally regular curve;
D O I
10.1016/j.topol.2007.09.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalizing results by J. Ford, J. W. Rogers, Jr. and H. Kato we prove that (1) a map f from a G-like continuum onto a graph G is refinable iff f is monotone; (2) a graph G is an arc or a simple closed curve iff every G-like continuum that contains no nonboundary indecomposable subcontinuum admits a monotone map onto G. We prove that if bonding maps in the inverse sequence of compact spaces are refinable then the projections of the inverse limit onto factor spaces are refinable. We use this fact to show that refinable maps do not preserve completely regular or totally regular continua. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:207 / 212
页数:6
相关论文
共 50 条
[22]   DEGREE-ONE, MONOTONE SELF-MAPS OF THE PONTRYAGIN SURFACE ARE NEAR-HOMEOMORPHISMS [J].
Daverman, Robert J. ;
Thickstun, Thomas L. .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 303 (01) :93-131
[23]   Bi-monotone maps on the set of all variance-covariance matrices with respect to minus partial order [J].
Dolinar, Gregor ;
Ilisevic, Dijana ;
Kuzma, Bojan ;
Marovt, Janko .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 705 :26-49
[24]   Monotone preimages of dendrites [J].
Wright, Evan P. .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (04) :663-668
[25]   Properties of functions with monotone graphs [J].
Michael Hrušák ;
Tamás Mátrai ;
Aleš Nekvinda ;
Václav Vlasák ;
Ondřej Zindulka .
Acta Mathematica Hungarica, 2014, 142 :1-30
[26]   PROPERTIES OF FUNCTIONS WITH MONOTONE GRAPHS [J].
Hrusak, M. ;
Matrai, T. ;
Nekvinda, A. ;
Vlasak, V. ;
Zindulka, O. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) :1-30
[27]   MAXIMUM GRADIENT EMBEDDINGS AND MONOTONE CLUSTERING [J].
Mendel, Manor ;
Naor, Assaf .
COMBINATORICA, 2010, 30 (05) :581-615
[28]   Uniform and monotone line sum optimization [J].
Koutecky, Martin ;
Onn, Shmuel .
DISCRETE APPLIED MATHEMATICS, 2021, 298 :165-170
[29]   Mapping Monotone Boolean Functions into Majority [J].
Testa, Eleonora ;
Soeken, Mathias ;
Amaru, Luca G. ;
Haaswijk, Winston ;
De Micheli, Giovanni .
IEEE TRANSACTIONS ON COMPUTERS, 2019, 68 (05) :791-797
[30]   Induced maps on n-fold hyperspace suspensions [J].
Macías, S .
TOPOLOGY PROCEEDINGS, VOL 28, NO 1, 2004, 2004, 28 (01) :143-152